1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
// Copyright INRIA
//DASSL
// PROBLEM 1.. LINEAR DIFFERENTIAL/ALGEBRAIC SYSTEM
//
//X1DOT + 10.0*X1 = 0
//X1 + X2 = 1
//X1(0) = 1.0, X2(0) = 0.0
//
t=1:10;t0=0;y0=[1;0];y0d=[-10;0];
info=list([],0,[],[],[],0,0);
// Calling Scilab functions
deff('[r,ires]=dres1(t,y,ydot)','r=[ydot(1)+10*y(1);y(2)+y(1)-1];ires=0')
deff('pd=djac1(t,y,ydot,cj)','pd=[cj+10,0;1,1]')
// scilab function, without jacobian
yy0=dassl([y0,y0d],t0,t,dres1,info);
// scilab functions, with jacobian
yy1=dassl([y0,y0d],t0,t,dres1,djac1,info);
// fortran routine, without jocabian
yy2=dassl([y0,y0d],t0,t,'dres1',info); //=yy0
if norm(yy2-yy0,1)>1D-5 then bugmes();quit;end
// fortran routines, with jacobian
yy3=dassl([y0,y0d],t0,t,'dres1','djac1',info); //=yy1
if norm(yy3-yy1,1)>1D-5 then bugmes();quit;end
yy3bis=dassl([y0,y0d],t0,t,'dres1',djac1,info);
// call fortran dres1 and scilab's djac1
yy3ter=dassl([y0,y0d],t0,t,dres1,'djac1',info);
//
// with specific atol and rtol parameters
atol=1.d-6;rtol=0;
yy4=dassl([y0,y0d],t0,t,atol,rtol,dres1,info);
yy5=dassl([y0,y0d],t0,t,atol,rtol,'dres1',info); //=yy4
if norm(yy5-yy4,1)>1D-9 then bugmes();quit;end
yy6=dassl([y0,y0d],t0,t,atol,rtol,dres1,djac1,info);
yy7=dassl([y0,y0d],t0,t,atol,rtol,'dres1','djac1',info); //==yy6
if norm(yy7-yy6,1)>1D-12 then bugmes();quit;end
//
// Testing E xdot - A x=0
// x(0)=x0; xdot(0)=xd0
rand('seed',0);
nx=5;
E=rand(nx,1)*rand(1,nx);A=rand(nx,nx);
// Index 1
[Si,Pi,Di,o]=penlaur(E,A);pp=Si*E;[q,m]=fullrf(pp);x0=q(:,1);x0d=pinv(E)*A*x0;
rank A^k rcond
1. 0.100D+01
deff('[r,ires]=g(t,x,xdot)','r=E*xdot-A*x;ires=0');
t=[1,2,3];t0=0;info=list([],0,[],[],[],0,0);
x=dassl([x0,x0d],t0,t,g,info);x1=x(2:nx+1,:);
if norm(pp*x1-x1,1)>1.d-5 then bugmes();quit;end
//x(4) goes through 1 at t=1.5409711;
t=1.5409711;ww=dassl([x0,x0d],t0,t,g,info);
if abs(ww(5)-1)>0.001 then bugmes();quit;end
deff('[rt]=surface(t,y,yd)','rt=y(4)-1');nbsurf=1;
[yyy,nnn]=dasrt([x0,x0d],t0,t,g,nbsurf,surface,info);
deff('pd=j(t,y,ydot,cj)','pd=cj*D-A');
x=dassl([x0,x0d],t0,t,g,j,info);x2=x(2:nx+1,1);
if norm(x2-ww(2:nx+1,1),1)>0.0001 then bugmes();quit;end
[yyy1,nnn]=dasrt([x0,x0d],t0,t,g,j,nbsurf,surface,info);
//x0d is not known:
x0d=ones(x0);info(7)=1;
x=dassl([x0,x0d],t0,t,g,info);
xn=dassl([x0,x0d],t0,t,g,j,info);
if norm(x-xn,1)>0.00001 then bugmes();quit;end
//PROBLEM 2..
info=list([],0,[],[],[],0,0);
y0=zeros(25,1);y0(1)=1;
delta=0*y0;
//link('dres2.o','dres2');
//y0d=call('dres2',0,1,'d',y0,2,'d',delta,3,'d',0,5,'i',0,6,'d',0,7,'d','out',[25,1],4,'d');
y0d=zeros(y0);y0d(1)=-2;y0d(2)=1;y0d(6)=1;
t0=0;t=[0.01,0.1,1,10,100];
rtol=0;atol=1.d-6;
y=dassl([y0,y0d],t0,t,atol,rtol,'dres2',info);
// DASRT
//
//C-----------------------------------------------------------------------
//C First problem.
//C The initial value problem is..
//C DY/DT = ((2*LOG(Y) + 8)/T - 5)*Y, Y(1) = 1, 10.LE. T0.LE. 6
//C The solution is Y(T) = EXP(-T**2 + 5*T - 4), YPRIME(1) = 3
//C The two root functions are..
//C G1 = ((2*LOG(Y)+8)/T - 5)*Y (= DY/DT) (with root at T = 2.5),
//C G2 = LOG(Y) - 2.2491 (with roots at T = 2.47 and 2.53)
//C-----------------------------------------------------------------------
y0=1;t=2:6;t0=1;y0d=3;
info=list([],0,[],[],[],0,0);
atol=1.d-6;rtol=0;ng=2;
[yy,nn]=dasrt([y0,y0d],t0,t,atol,rtol,'res1',ng,'gr1',info);
if abs(nn(1)-2.47)>0.001 then bugmes();quit;end
y0=yy(2,2);y0d=yy(3,2);t0=nn(1);t=[3,4,5,6];
[yy,nn]=dasrt([y0,y0d],t0,t,atol,rtol,'res1',ng,'gr1',info);
if abs(nn(1)-2.5)>0.001 then bugmes();quit;end
y0=yy(2,1);y0d=yy(3,1);t0=nn(1);t=[3,4,5,6];
[yy,nn]=dasrt([y0,y0d],t0,t,atol,rtol,'res1',ng,'gr1',info);
if abs(nn(1)-2.53)>0.001 then bugmes();quit;end
deff('[delta,ires]=res1(t,y,ydot)','ires=0;delta=ydot-((2*log(y)+8)/t-5)*y')
deff('[rts]=gr1(t,y,yd)','rts=[((2*log(y)+8)/t-5)*y;log(y)-2.2491]')
y0=1;t=2:6;t0=1;y0d=3;
info=list([],0,[],[],[],0,0);
atol=1.d-6;rtol=0;ng=2;
[yy,nn]=dasrt([y0,y0d],t0,t,atol,rtol,res1,ng,gr1,info);
if abs(nn(1)-2.47)>0.001 then bugmes();quit;end
y0=yy(2,2);y0d=yy(3,2);t0=nn(1);t=[3,4,5,6];
[yy,nn]=dasrt([y0,y0d],t0,t,atol,rtol,res1,ng,gr1,info);
if abs(nn(1)-2.5)>0.001 then bugmes();quit;end
y0=yy(2,1);y0d=yy(3,1);t0=nn(1);t=[3,4,5,6];
[yy,nn]=dasrt([y0,y0d],t0,t,atol,rtol,res1,ng,gr1,info);
if abs(nn(1)-2.53)>0.001 then bugmes();quit;end
//C
//C-----------------------------------------------------------------------
//C Second problem (Van Der Pol oscillator).
//C The initial value problem is..
//C DY1/DT = Y2, DY2/DT = 100*(1 - Y1**2)*Y2 - Y1,
//C Y1(0) = 2, Y2(0) = 0, 00.LE. T0.LE. 200
//C Y1PRIME(0) = 0, Y2PRIME(0) = -2
//C The root function is G = Y1.
//C An analytic solution is not known, but the zeros of Y1 are known
//C to 15 figures for purposes of checking the accuracy.
//C-----------------------------------------------------------------------
rtol=[1.d-6;1.d-6];atol=[1.d-6;1.d-4];
t0=0;y0=[2;0];y0d=[0;-2];t=[20:20:200];ng=1;
info=list([],0,[],[],[],0,0);
[yy,nn]=dasrt([y0,y0d],t0,t,atol,rtol,'res2','jac2',ng,'gr2',info);
if abs(nn(1)-81.163512)>0.001 then bugmes();quit;end
deff('[delta,ires]=res2(t,y,ydot)',...
'ires=0;y1=y(1),y2=y(2),delta=[ydot-[y2;100*(1-y1*y1)*y2-y1]]')
[yy,nn]=dasrt([y0,y0d],t0,t,atol,rtol,res2,'jac2',ng,'gr2',info);
deff('J=jac2(t,y,ydot,c)','y1=y(1);y2=y(2);J=[c,-1;200*y1*y2+1,c-100*(1-y1*y1)]')
[yy,nn]=dasrt([y0,y0d],t0,t,atol,rtol,res2,jac2,ng,'gr2',info);
deff('s=gr2(t,y,yd)','s=y(1)')
[yy,nn]=dasrt([y0,y0d],t0,t,atol,rtol,res2,jac2,ng,gr2,info);
// Hot Restart
[yy,nn,hotd]=dasrt([y0,y0d],t0,t,atol,rtol,'res2','jac2',ng,'gr2',info);
t01=nn(1);t=100:20:200;[pp,qq]=size(yy);y01=yy(2:3,qq);y0d1=yy(3:4,qq);
[yy,nn,hotd]=dasrt([y01,y0d1],t01,t,atol,rtol,'res2','jac2',ng,'gr2',info,hotd);
if abs(nn(1)-162.57763)>0.001 then bugmes();quit;end
//Test of Dynamic link (Require f77!)
// 1 making the routines
res22=[...
' SUBROUTINE RES22(T,Y,YDOT,DELTA,IRES,RPAR,IPAR)';
' IMPLICIT DOUBLE PRECISION (A-H,O-Z)';
' INTEGER NEQ';
' DIMENSION Y(*), YDOT(*), DELTA(*)';
' NEQ=2';
' CALL F2(NEQ,T,Y,DELTA)';
' DO 10 I = 1,NEQ';
' DELTA(I) = YDOT(I) - DELTA(I)';
' 10 CONTINUE';
' RETURN';
' END';
' SUBROUTINE F2 (NEQ, T, Y, YDOT)';
' IMPLICIT DOUBLE PRECISION (A-H,O-Z)';
' INTEGER NEQ';
' DOUBLE PRECISION T, Y, YDOT';
' DIMENSION Y(*), YDOT(*)';
' YDOT(1) = Y(2)';
' YDOT(2) = 100.0D0*(1.0D0 - Y(1)*Y(1))*Y(2) - Y(1)';
' RETURN';
' END';]
res22 =
! SUBROUTINE RES22(T,Y,YDOT,DELTA,IRES,RPAR,IPAR) !
! !
! IMPLICIT DOUBLE PRECISION (A-H,O-Z) !
! !
! INTEGER NEQ !
! !
! DIMENSION Y(*), YDOT(*), DELTA(*) !
! !
! NEQ=2 !
! !
! CALL F2(NEQ,T,Y,DELTA) !
! !
! DO 10 I = 1,NEQ !
! !
! DELTA(I) = YDOT(I) - DELTA(I) !
! !
! 10 CONTINUE !
! !
! RETURN !
! !
! END !
! !
! SUBROUTINE F2 (NEQ, T, Y, YDOT) !
! !
! IMPLICIT DOUBLE PRECISION (A-H,O-Z) !
! !
! INTEGER NEQ !
! !
! DOUBLE PRECISION T, Y, YDOT !
! !
! DIMENSION Y(*), YDOT(*) !
! !
! YDOT(1) = Y(2) !
! !
! YDOT(2) = 100.0D0*(1.0D0 - Y(1)*Y(1))*Y(2) - Y(1) !
! !
! RETURN !
! !
! END !
jac22=[...
' SUBROUTINE JAC22 (T, Y, ydot, PD, CJ, RPAR, IPAR)';
' ';
' IMPLICIT DOUBLE PRECISION (A-H,O-Z)';
' INTEGER NROWPD';
' DOUBLE PRECISION T, Y, PD';
' PARAMETER (NROWPD=2)';
' DIMENSION Y(2), PD(NROWPD,2)';
' PD(1,1) = 0.0D0';
' PD(1,2) = 1.0D0';
' PD(2,1) = -200.0D0*Y(1)*Y(2) - 1.0D0';
' PD(2,2) = 100.0D0*(1.0D0 - Y(1)*Y(1))';
' PD(1,1) = CJ - PD(1,1)';
' PD(1,2) = - PD(1,2)';
' PD(2,1) = - PD(2,1)';
' PD(2,2) = CJ - PD(2,2)';
' RETURN';
' END';]
jac22 =
! SUBROUTINE JAC22 (T, Y, ydot, PD, CJ, RPAR, IPAR) !
! !
! !
! !
! IMPLICIT DOUBLE PRECISION (A-H,O-Z) !
! !
! INTEGER NROWPD !
! !
! DOUBLE PRECISION T, Y, PD !
! !
! PARAMETER (NROWPD=2) !
! !
! DIMENSION Y(2), PD(NROWPD,2) !
! !
! PD(1,1) = 0.0D0 !
! !
! PD(1,2) = 1.0D0 !
! !
! PD(2,1) = -200.0D0*Y(1)*Y(2) - 1.0D0 !
! !
! PD(2,2) = 100.0D0*(1.0D0 - Y(1)*Y(1)) !
! !
! PD(1,1) = CJ - PD(1,1) !
! !
! PD(1,2) = - PD(1,2) !
! !
! PD(2,1) = - PD(2,1) !
! !
! PD(2,2) = CJ - PD(2,2) !
! !
! RETURN !
! !
! END !
gr22=[...
' SUBROUTINE GR22 (NEQ, T, Y, NG, GROOT, RPAR, IPAR)';
' IMPLICIT DOUBLE PRECISION (A-H,O-Z)';
' INTEGER NEQ, NG';
' DOUBLE PRECISION T, Y, GROOT';
' DIMENSION Y(*), GROOT(*)';
' GROOT(1) = Y(1)';
' RETURN';
' END';]
gr22 =
! SUBROUTINE GR22 (NEQ, T, Y, NG, GROOT, RPAR, IPAR) !
! !
! IMPLICIT DOUBLE PRECISION (A-H,O-Z) !
! !
! INTEGER NEQ, NG !
! !
! DOUBLE PRECISION T, Y, GROOT !
! !
! DIMENSION Y(*), GROOT(*) !
! !
! GROOT(1) = Y(1) !
! !
! RETURN !
! !
! END !
//Uncomment lines below: link may be machine dependent if some f77 libs are
//needed for linking
//unix_g('cd /tmp;rm -f /tmp/res22.f');unix_g('cd /tmp;rm -f /tmp/gr22.f');
//unix_g('cd /tmp;rm -f /tmp/jac22.f');
//write('/tmp/res22.f',res22);write('/tmp/gr22.f',gr22);write('/tmp/jac22.f',jac22)
//unix_g("cd /tmp;make /tmp/res22.o");unix_g('cd /tmp;make /tmp/gr22.o');
//unix_g('cd /tmp;make /tmp/jac22.o');
// 2 Linking the routines
//link('/tmp/res22.o','res22');link('/tmp/jac22.o','jac22');link('/tmp/gr22.o','gr22')
//rtol=[1.d-6;1.d-6];atol=[1.d-6;1.d-4];
//t0=0;y0=[2;0];y0d=[0;-2];t=[20:20:200];ng=1;
//info=list([],0,[],[],[],0,0);
// 3 Calling the routines by dasrt
//[yy,nn]=dasrt([y0,y0d],t0,t,atol,rtol,'res22','jac22',ng,'gr22',info);
// hot restart
//[yy,nn,hotd]=dasrt([y0,y0d],t0,t,atol,rtol,'res22','jac22',ng,'gr22',info);
//t01=nn(1);t=100:20:200;[pp,qq]=size(yy);y01=yy(2:3,qq);y0d1=yy(3:4,qq);
//[yy,nn,hotd]=dasrt([y01,y0d1],t01,t,atol,rtol,'res22','jac22',ng,'gr22',info,hotd);
|