| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 
 | xselect();xbasc();wdim=xget('wdim')
mode(1)
//
getf('SCI/demos/pendulum/simulation.sci')
getf('SCI/demos/pendulum/graphics.sci')
//
x_message('the cart')
// ----------------
//
 xselect();
 dpnd()
//
// equations 
//----------
//state =[x x' theta theta']  
//
 mb=0.1;mc=1;l=0.3;m=4*mc+mb;//constants
//
x_message('open loop simulation');
//
 y0=[0;0;0.1;0];
// y=ode(y0,0,0.03*(1:180),ivpd);
 y=read('SCI/demos/pendulum/yy',4,180,'(e12.6)');
 xbasc();
 anim(y(1,:),y(3,:));
//
x_message('linearization')
//
 x0=[0;0;0;0];u0=0;
 [f,g,h,j]=lin(pendu,x0,u0);
 pe=syslin('c',f,g,h,j);ssprint(pe)
//
x_message('checking the result');
//
 f1=[0 1        0             0
    0 0    -3*mb*9.81/m         0
    0 0        0             1
    0 0  6*(mb+mc)*9.81/(m*l)   0];
 g1=[0 ; 4/m ; 0 ; -6/(m*l)];
 h1=[1 0 0 0
     0 0 1 0];
 norm(f-f1,1)+norm(g-g1,1)+norm(h-h1,1)+norm(j,1)
 
x_message('analysis');
//---------
//stability (unstable system !)
//
 spec(f)
//
//controlability
//
 n=contr(f,g)
//
//observability
//
 m1=contr(f',h(1,:)')
//
 [m2,t]=contr(f',h(2,:)')
 
//
x_message('synthesis of a stabilizing controller');
//-------------------------------------------------
//
//pole placement technique
//only x and theta are observed  : contruction of an observer
//to estimate the state : z'=(f-k*h)*z+k*y+g*u
//
 to=0.1;  //
 k=ppol(f',h',-ones(4,1)/to)'  //observer gain
//
//verification
//
// norm( poly(f-k*h,'z')-poly(-ones(4,1)/to,'z'))
//
 kr=ppol(f,g,-ones(4,1)/to)  //compensator gain
 
//
x_message('linear system  pendulum-observer-compensator')
//---------------------------------------------
//
//state: [x x-z]
//
 ft=[f-g*kr            -g*kr
      0*f               f-k*h]
 gt=[g;0*g];
 ht=[h,0*h];
 pr=syslin('c',ft,gt,ht);
// closed loop dynamics:
 spec(pr(2))
//transfer matrix representation
 hr=clean(ss2tf(pr),1.d-10)
 
 
 //frequency analysis
 // black(pr,0.01,100,['position','theta'])
 g_margin(pr(1,1))
 
 
//
x_message('sampled system')
//---------------
//
 t=to/5;
 prd=dscr(pr,t);
 spec(prd(2))
 
//
x_message('impulse response')
//-----------------
//
 x0=[0;0;0;0;0;0;0;0];
 u(1,180)=0;u(1,1)=1;
 y=flts(u,prd,x0);
 draw(0)
//
x_message('compensation of the non linear system');
//--------------------------------------
//
//simulation
//
 t0=0;t1=t*(1:125);
 x0=[0 0 0.4 0   0 0 0 0]';   //
 yd=ode(x0,t0,t1,regu);
//
 x_message('non linear simulation')
 draw(1)
mode(0)
x_message('The end')
xbasc()
xset('wdim',wdim(1),wdim(2))
 |