File: random.sci

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (131 lines) | stat: -rw-r--r-- 2,873 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
function [y]=RndInt(m,n,imin,imax) 
// discrete uniform random number 
//-------------------------------
// Copyright INRIA
y=rand(m,n,'uniform')
y=int(floor(y*(imax+1-imin)+ imin ));


function [y]=RndDisc(m,n,x,p)
// discrete law random number
// sum p_i delta_{x_i}
//-------------------------------
p1=[0,p];p1=cumsum(p1);
y=rand(m,n,'uniform')
N=prod(size(x));
res=0*ones(m*n);
for i=1:N,z=0*ones(m*n,1),id=find( p1(i) <= y & y < p1(i+1) ),
 	z(id)=x(i)*ones(prod(size(id))),res=res+z;
end
y=matrix(res,m,n);


function [y]=Binomial(m,n,pb,nb) 
// Binomial law (p,N) 
// P{X=n} = C_N^n p^n (1-p)^(N-n)
//----------------------------------
  res=[];
 // we use blocks of size 100 to avoid overflows 
  ntir=100;
  ntirc=ntir;
  y=rand(ntir,nb,'uniform');
  indy= find( y < pb);
  y=0*ones(y);
  y(indy)=1;
  y=sum(y,'c')
  res=[res;y];
  while ( ntirc < m*n )
     y=rand(ntir,nb,'uniform');
     indy= find(y< pb);
     y=0*ones(y);
     y(indy)=1;
     y=sum(y,'c')
     res=[res;y];
     ntirc=ntirc+ntir;
  end 
  y=matrix(res(1:m*n),m,n);


function [y]=Geom(m,n,p) 
// P(0)= 0 P(i) = p*(1-p)^{n-1} P(inf)=0
// E = 1/p ; sig2= (1-p)/p^2
//--------------------------------------
if p >= 1 then write(%io(2),'p must be < 1');end
y=0*ones(m,n)
for i=1:m*n, 
	samples=1
	z=rand(1,1,'uniform');
	while( z < 1-p) ,z=rand(1,1,'uniform'); samples=samples+1;end
	y(i)= samples;
end
y=matrix(y,m,n)



function [y]=Poisson(m,n,pmean) 
// P{n} = exp(-lambda)lambda^n/n!
// pmean =lambda 
//----------------------------
y=0*ones(m,n)
bound= exp(-pmean);
for i=1:m*n, 
	count=0
	lprod=1
	while( lprod >= bound), lprod=lprod*rand(1,1,'uniform');
	count=count+1;end
	y(i)=count-1;
end
y=matrix(y,m,n)

function [y]=Exp(m,n,lambda)
// lambda exp(-lambda x) x>=0 
// ---------------------------
y=(-1/lambda)* log(rand(m,n,'uniform'));


function [y]=Weibull(m,n,alpha,beta)
//------------------------------- 
y=rand(m,n,'uniform')
y= (beta*( - log(1-y)))^(1/alpha)


function [y]=HyperGeom(m,n,Mean,var)
//------------------------------- 
z = var / (Mean * Mean);
pP = 0.5 * (1.0 - sqrt((z - 1.0) / ( z + 1.0 )));
y=rand(m,n,'uniform')
zz=find( y > pP) ;
y=pP*ones(y);
y(zz) = (1-pP)*ones(zz);
y1=rand(m,n,'uniform')
y=-Mean * log(y1) ./ (2.0 * y) ;


function [y]=Erlang(m,n,pMean,pVariance) 
//------------------------------- 
  k = int( (pMean * pMean ) / pVariance + 0.5 );
  if (k <= 0) then k=1;end
  a = k / pMean;
 // we use blocks of size 100 to avoid overflows 
  res=[];
  ntir=100;
  ntirc=ntir;
  y=rand(ntir,k,'uniform');
  y= -log(prod(y,'r'))/a;
  res=[res;y];
  while ( ntirc < m*n )
     y=rand(ntir,k,'uniform');
     y= -log(prod(y,'r'))/a;
     res=[res;y];
     ntirc=ntirc+ntir;
  end 
  y=matrix(res(1:m*n),m,n);


function [y]=RndPerm(n) 
//------------------------------- 
// a uniform random permutation of (1:n)
y=rand(1,n,'uniform')
[us,z]=sort(y);