1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
function [y]=RndInt(m,n,imin,imax)
// discrete uniform random number
//-------------------------------
// Copyright INRIA
y=rand(m,n,'uniform')
y=int(floor(y*(imax+1-imin)+ imin ));
function [y]=RndDisc(m,n,x,p)
// discrete law random number
// sum p_i delta_{x_i}
//-------------------------------
p1=[0,p];p1=cumsum(p1);
y=rand(m,n,'uniform')
N=prod(size(x));
res=0*ones(m*n);
for i=1:N,z=0*ones(m*n,1),id=find( p1(i) <= y & y < p1(i+1) ),
z(id)=x(i)*ones(prod(size(id))),res=res+z;
end
y=matrix(res,m,n);
function [y]=Binomial(m,n,pb,nb)
// Binomial law (p,N)
// P{X=n} = C_N^n p^n (1-p)^(N-n)
//----------------------------------
res=[];
// we use blocks of size 100 to avoid overflows
ntir=100;
ntirc=ntir;
y=rand(ntir,nb,'uniform');
indy= find( y < pb);
y=0*ones(y);
y(indy)=1;
y=sum(y,'c')
res=[res;y];
while ( ntirc < m*n )
y=rand(ntir,nb,'uniform');
indy= find(y< pb);
y=0*ones(y);
y(indy)=1;
y=sum(y,'c')
res=[res;y];
ntirc=ntirc+ntir;
end
y=matrix(res(1:m*n),m,n);
function [y]=Geom(m,n,p)
// P(0)= 0 P(i) = p*(1-p)^{n-1} P(inf)=0
// E = 1/p ; sig2= (1-p)/p^2
//--------------------------------------
if p >= 1 then write(%io(2),'p must be < 1');end
y=0*ones(m,n)
for i=1:m*n,
samples=1
z=rand(1,1,'uniform');
while( z < 1-p) ,z=rand(1,1,'uniform'); samples=samples+1;end
y(i)= samples;
end
y=matrix(y,m,n)
function [y]=Poisson(m,n,pmean)
// P{n} = exp(-lambda)lambda^n/n!
// pmean =lambda
//----------------------------
y=0*ones(m,n)
bound= exp(-pmean);
for i=1:m*n,
count=0
lprod=1
while( lprod >= bound), lprod=lprod*rand(1,1,'uniform');
count=count+1;end
y(i)=count-1;
end
y=matrix(y,m,n)
function [y]=Exp(m,n,lambda)
// lambda exp(-lambda x) x>=0
// ---------------------------
y=(-1/lambda)* log(rand(m,n,'uniform'));
function [y]=Weibull(m,n,alpha,beta)
//-------------------------------
y=rand(m,n,'uniform')
y= (beta*( - log(1-y)))^(1/alpha)
function [y]=HyperGeom(m,n,Mean,var)
//-------------------------------
z = var / (Mean * Mean);
pP = 0.5 * (1.0 - sqrt((z - 1.0) / ( z + 1.0 )));
y=rand(m,n,'uniform')
zz=find( y > pP) ;
y=pP*ones(y);
y(zz) = (1-pP)*ones(zz);
y1=rand(m,n,'uniform')
y=-Mean * log(y1) ./ (2.0 * y) ;
function [y]=Erlang(m,n,pMean,pVariance)
//-------------------------------
k = int( (pMean * pMean ) / pVariance + 0.5 );
if (k <= 0) then k=1;end
a = k / pMean;
// we use blocks of size 100 to avoid overflows
res=[];
ntir=100;
ntirc=ntir;
y=rand(ntir,k,'uniform');
y= -log(prod(y,'r'))/a;
res=[res;y];
while ( ntirc < m*n )
y=rand(ntir,k,'uniform');
y= -log(prod(y,'r'))/a;
res=[res;y];
ntirc=ntirc+ntir;
end
y=matrix(res(1:m*n),m,n);
function [y]=RndPerm(n)
//-------------------------------
// a uniform random permutation of (1:n)
y=rand(1,n,'uniform')
[us,z]=sort(y);
|