1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
|
function [L,M,T]= gfrancis(Plant,Model);
// This function computes an optimal model matching
// controller for the linear plant
// x'= F*x + G*u
// y = H*x + J*u
// and the linear model
// xm'= A*xm + B*um
// ym = C*xm + D*um
// The dimensions of x,u,y are n,m,p and those of xm,um,ym are
// nn,mm,pp and pp=p.
// The goal is for the plant to track the model
// e = y - ym ---> 0
// while keeping stable the state x(t) of the plant. To accomplish
// this, we use feedforward and feedback
// u = L*xm + M*um + K*(x-T*xm) = [K , L-K*T] *(x,xm) + M*um
// to drive the combined system to the closed loop invariant subspace
// x = T*xm
// where e = 0.
// The matrices T,L,M satisfy generalized Francis equations
// F*T + G*L = T*A
// H*T + J*L = C
// G*M = T*B
// J*M = D
// The matrix K is chosen as stabilizing the pair (F,G) i.e
// F+G*K is stable.
// For more information on this approach, see
// Krener, A. J., Optimal model matching controllers for linear
// and nonlinear systems, Proceedings of NOLCOS, Bordeaux, 1992.
// Copyright INRIA
[F,G,H,J]=Plant(2:5);
[A,B,C,D]=Model(2:5);
[nf,nf]=size(F);[ny,nu]=size(J);
[na,na]=size(A);[lc,num]=size(D);
Ia=eye(na,na);Inf=eye(nf,nf);Iu=eye(num,num);
Mat=[Ia.*.F-A'.*.Inf, Ia.*.G, zeros(nf*na,nu*num);
Ia.*.H , Ia.*.J, zeros(ny*na,nu*num);
-B'.*.Inf, zeros(nf*num,nu*na), Iu.*.G;
zeros(ny*num,nf*na),zeros(ny*num,nu*na),Iu.*.J];
rhs=[zeros(nf*na,1);
matrix(C,size(C,'*'),1);
zeros(nf*num,1);
matrix(D,size(D,'*'),1)];
TLM=pinv(Mat)*rhs;
T=TLM(1:nf*na);T=matrix(T,nf,na);
L=TLM(nf*na+1:nf*na+nu*na);L=matrix(L,nu,na);
M=TLM(nf*na+nu*na+1:nf*na+nu*na+nu*num);M=matrix(M,nu,num);
Wplant=[F,G;H,J];
Wmodel=[A,B;C,D];
//check
err=norm(Wplant*[T,zeros(nf,num);
L,M]-[T,zeros(nf,lc);
zeros(lc,na),eye(lc,lc)]*Wmodel,1);
if err > 1.d-5 then warning('Francis equations not satisfied!');end
|