File: cainv.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (91 lines) | stat: -rw-r--r-- 3,495 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
cainv            Scilab Group            Scilab Function              cainv
NAME
   cainv -  Dual of abinv
  
CALLING SEQUENCE
 [X,dims,J,Y,k,Z]=cainv(Sl,alfa,beta,flag)
PARAMETERS
 Sl         : syslin list containing the matrices [A,B,C,D].
            
 alfa       : real number or vector (possibly complex, location of closed
            loop poles)
            
 beta       : real number or vector (possibly complex, location of closed
            loop poles)
            
 flag       : (optional) character string 'ge' (default) or 'st' or 'pp'
            
 X          : orthogonal matrix of size nx (dim of state space).
            
 dims       : integer row vector dims=[nd1,nu1,dimS,dimSg,dimN]  (5
            entries, nondecreasing order).If flag='st', (resp. 'pp'), dims
            has 4 (resp. 3) components.
            
 J          : real matrix (output injection)
            
 Y          : orthogonal matrix of size ny (dim of output space).
            
 k          : integer (normal rank of Sl)
            
 Z          : non-singular linear system (syslin list)
            
DESCRIPTION
   cainv finds a bases (X,Y) (of state space and output space resp.) and
  output injection matrix J such that the matrices of Sl in  bases (X,Y)
  are displayed as:
  
 
                   [A11,*,*,*,*,*]                [*]
                   [0,A22,*,*,*,*]                [*]
    X'*(A+J*C)*X = [0,0,A33,*,*,*]   X'*(B+J*D) = [*]
                   [0,0,0,A44,*,*]                [0]
                   [0,0,0,0,A55,*]                [0]
                   [0,0,0,0,0,A66]                [0]
 
           Y*C*X = [0,0,C13,*,*,*]          Y*D = [*]
                   [0,0,0,0,0,C26]                [0]
 
 
   The partition of X is defined by the vector 
  dims=[nd1,nu1,dimS,dimSg,dimN] and the partition of Y is determined by k.
  
   Eigenvalues of A11 (nd1 x nd1) are unstable. Eigenvalues of A22 (nu1-nd1
  x nu1-nd1) are stable.
  
   The pair (A33, C13) (dimS-nu1 x dimS-nu1, k x dimS-nu1) is observable, 
  and eigenvalues of A33 are set to alfa.
  
   Matrix A44 (dimSg-dimS x dimSg-dimS) is unstable. Matrix A55
  (dimN-dimSg,dimN-dimSg) is stable
  
   The pair (A66,C26) (nx-dimN x nx-dimN) is observable,  and eigenvalues of
  A66 set to beta.
  
   The dimS first columns of X span S= smallest (C,A) invariant subspace
  which contains Im(B), dimSg first columns of X span Sg the maximal
  "complementary detectability subspace" of Sl
  
   The dimN first columns of X span the maximal "complementary observability
  subspace" of Sl.  (dimS=0 if B(ker(D))=0).
  
   If flag='st' is given, a five blocks partition of the matrices is 
  returned and dims has four components. If flag='pp' is  given a four
  blocks partition is returned (see abinv).
  
   This function can be used to calculate an unknown input observer:
  
 // DDEP: dot(x)=A x + Bu + Gd
 //           y= Cx   (observation)
 //           z= Hx    (z=variable to be estimated, d=disturbance)
 //  Find: dot(w) = Fw + Ey + Ru such that
 //          zhat = Mw + Ny
 //           z-Hx goes to zero at infinity
 //  Solution exists iff Ker H contains Sg(A,C,G) inter KerC (assuming detectability)
 //i.e. H is such that:
 // For any W which makes a column compression of [Xp(1:dimSg,:);C]
 // with Xp=X' and [X,dims,J,Y,k,Z]=cainv(syslin('c',A,G,C));
 // [Xp(1:dimSg,:);C]*W = [0 | *] one has
 // H*W = [0 | *]  (with at least as many aero columns as above).
SEE ALSO
   abinv, dt_ility, ui_observer