File: ddp.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (86 lines) | stat: -rw-r--r-- 2,824 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
ddp              Scilab Group              Scilab Function              ddp
NAME
   ddp - disturbance decoupling
  
CALLING SEQUENCE
 [Closed,F,G]=ddp(Sys,zeroed,B1,D1)
 [Closed,F,G]=ddp(Sys,zeroed,B1,D1,flag,alfa,beta)
PARAMETERS
 Sys  : syslin list containing the matrices (A,B2,C,D2).
      
 zeroed
       : integer vector, indices of outputs of Sys which are zeroed.
      
 B1   : real matrix
      
 D1   : real matrix. B1 and D1 have the same number of columns.
      
 flag : string 'ge' or 'st' (default) or 'pp'.
      
 alfa : real or complex vector (loc. of closed loop poles)
      
 beta : real or complex vector (loc. of closed loop poles)
      
DESCRIPTION
   Exact disturbance decoupling (output nulling algorithm). Given a linear
  system, and a subset of outputs, z, which are to be zeroed, characterize
  the inputs w of Sys such that the  transfer function from w to z is zero.
  Sys is a linear system {A,B2,C,D2} with one input and two outputs  ( i.e.
   Sys: u-->(z,y) ), part the following system defined from Sys and B1,D1:
  
   xdot =  A x + B1  w + B2  u
      z = C1 x + D11 w + D12 u
      y = C2 x + D21 w + D22 u
   outputs of Sys are partitioned into (z,y) where z is to be zeroed, i.e.
  the matrices C and D2 are:
  
      C=[C1;C2]         D2=[D12;D22]
      C1=C(zeroed,:)    D12=D2(zeroed,:)
   The matrix D1 is partitioned similarly as D1=[D11;D21] with
  D11=D1(zeroed,:). The control is u=Fx+Gw and one  looks for matriced F,G
  such that the  closed loop system: w-->z given by 
  
   xdot= (A+B2*F)  x + (B1 + B2*G) w
     z = (C1+D12F) x + (D11+D12*G) w
   has zero transfer transfer function.
  
   flag='ge' : no stability constraints. flag='st' : look for stable closed
  loop system (A+B2*F stable). flag='pp' : eigenvalues of A+B2*F are
  assigned to alfa and  beta.
  
   Closed is a realization of the w-->y closed loop system
  
   xdot= (A+B2*F)  x + (B1 + B2*G) w
     y = (C2+D22*F) x + (D21+D22*G) w
   Stability (resp. pole placement) requires stabilizability  (resp.
  controllability) of (A,B2).
  
EXAMPLE
 rand('seed',0);nx=6;nz=3;nu=2;ny=1;
 A=diag(1:6);A(2,2)=-7;A(5,5)=-9;B2=[1,2;0,3;0,4;0,5;0,0;0,0];
 C1=[zeros(nz,nz),eye(nz,nz)];D12=[0,1;0,2;0,3];
 Sys12=syslin('c',A,B2,C1,D12);
 C=[C1;rand(ny,nx)];D2=[D12;rand(ny,size(D12,2))];
 Sys=syslin('c',A,B2,C,D2);
 [A,B2,C1,D12]=abcd(Sys12);  //The matrices of Sys12.
 alfa=-1;beta=-2;flag='ge';
 [X,dims,F,U,k,Z]=abinv(Sys12,alfa,beta,flag);
 clean(X'*(A+B2*F)*X)
 clean(X'*B2*U)
 clean((C1+D12*F)*X)
 clean(D12*U);
 //Calculating an ad-hoc B1,D1
 G1=rand(size(B2,2),3);
 B1=-B2*G1;
 D11=-D12*G1;
 D1=[D11;rand(ny,size(B1,2))];
 
 [Closed,F,G]=ddp(Sys,1:nz,B1,D1,'st',alfa,beta);
 closed=syslin('c',A+B2*F,B1+B2*G,C1+D12*F,D11+D12*G);
 ss2tf(closed)
AUTHOR
   F.D.
  
SEE ALSO
   abinv, ui_observer