File: frep2tf.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (63 lines) | stat: -rw-r--r-- 2,279 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
frep2tf           Scilab Group           Scilab Function            frep2tf
NAME
   frep2tf - transfer function realization from frequency response
  
CALLING SEQUENCE
 [h [,err]]=frep2tf(frq,repf,dg [,dom,tols,weight]) 
PARAMETERS
 frq        : vector of frequencies in Hz.
            
 repf       : vector of frequency response
            
 dg         : degree of linear system
            
 dom        : time domain ('c' or 'd' or dt)
            
 tols       : a vector of size 3 giving the relative and absolute
            tolerance  and the maximum number of iterations (default values
            are rtol=1.e-2; atol=1.e-4, N=10).
            
 weight     : vector of weights on frequencies 
            
 h          : SISO transfer function 
            
 err        : error (for example if dom='c' sum(abs(h(2i*pi*frq) -
            rep)^2)/size(frq,*))
            
DESCRIPTION
   Frequency response to  transfer function conversion. The order of h is a
  priori given in dg which must be provided. The following linear system is
  solved in the least square sense.
  
  weight(k)*(n( phi_k) - d(phi_k)*rep_k)=0, k=1,..,n
   where phi_k= 2*%i*%pi*frq when dom='c' and phi_k=exp(2*%i*%pi*dom*frq if
  not. If the weight vector is not given a default  penalization is used
  (when dom='c').  A stable and minimum phase system can be obtained by
  using function factors.
  
EXAMPLE
 s=poly(0,'s');
 h=syslin('c',(s-1)/(s^3+5*s+20))
 frq=0:0.05:3;repf=repfreq(h,frq);
 clean(frep2tf(frq,repf,3))
 
 Sys=ssrand(1,1,10); 
 frq=logspace(-3,2,200);
 [frq,rep]=repfreq(Sys,frq);  //Frequency response of Sys
 [Sys2,err]=frep2tf(frq,rep,10);Sys2=clean(Sys2)//Sys2 obtained from freq. resp of Sys
 [frq,rep2]=repfreq(Sys2,frq); //Frequency response of Sys2
 xbasc();bode(frq,[rep;rep2])   //Responses of Sys and Sys2
 [sort(trzeros(Sys)),sort(roots(Sys2('num')))]  //zeros
 [sort(spec(Sys('A'))),sort(roots(Sys2('den')))] //poles
 
 dom=1/1000; // Sampling time 
 z=poly(0,'z');
 h=syslin(dom,(z^2+0.5)/(z^3+0.1*z^2-0.5*z+0.08))
 frq=(0:0.01:0.5)/dom;repf=repfreq(h,frq);
 [Sys2,err]=frep2tf(frq,repf,3,dom);
 [frq,rep2]=repfreq(Sys2,frq); //Frequency response of Sys2
 xbasc();plot2d1("onn",frq',abs([repf;rep2])');
 
SEE ALSO
   imrep2ss, arl2, time_id, armax, frfit