File: ricc.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (74 lines) | stat: -rw-r--r-- 2,054 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
RICC             Scilab Group             Scilab Function              RICC
NAME
   ricc - Riccati equation 
  
CALLING SEQUENCE
 [X]=ricc(A,B,C,"cont")
 [X]=ricc(F,G,H,"disc")
PARAMETERS
 A,B,C      : real matrices of appropriate dimensions
            
 F,G,H      : real matrices of appropriate dimensions
            
 X          : real matrix
            
 "cont","disc"'
             : imposed string (flag for continuous or discrete)
            
DESCRIPTION
   Riccati solver.
  
   Continuous time:
  
   X=ricc(A,B,C,'cont')
   gives a solution to the continuous time ARE
  
   A'*X+X*A-X*B*X+C=0 .
   B and C are assumed to be nonnegative definite. (A,G) is assumed to be
  stabilizable with G*G' a full rank factorization of B.
  
   (A,H) is assumed to be detectable with H*H' a full rank factorization of
  C. 
  
   Discrete time:
  
   X=ricc(F,G,H,'disc')
   gives a solution  to the discrete time ARE 
  
   X=F'*X*F-F'*X*G1*((G2+G1'*X*G1)^-1)*G1'*X*F+H
   F is assumed invertible and   G = G1*inv(G2)*G1'.
  
   One  assumes  (F,G1) stabilizable and (C,F) detectable with C'*C full
  rank factorization of H. Use preferably ric_desc.
  
EXAMPLE
 //Standard formulas to compute Riccati solutions
 A=rand(3,3);B=rand(3,2);C=rand(3,3);C=C*C';R=rand(2,2);R=R*R'+eye();
 B=B*inv(R)*B';
 X=ricc(A,B,C,'cont');
 norm(A'*X+X*A-X*B*X+C,1)
 H=[A -B;-C -A'];
 [T,d]=gschur(eye(H),H,'cont');T=T(:,1:d);
 X1=T(4:6,:)/T(1:3,:);
 norm(X1-X,1)
 [T,d]=schur(H,'cont');T=T(:,1:d);
 X2=T(4:6,:)/T(1:3,:);
 norm(X2-X,1)
 //       Discrete time case
 F=A;B=rand(3,2);G1=B;G2=R;G=G1/G2*G1';H=C;
 X=ricc(F,G,H,'disc');
 norm(F'*X*F-(F'*X*G1/(G2+G1'*X*G1))*(G1'*X*F)+H-X)
 H1=[eye(3,3) G;zeros(3,3) F'];
 H2=[F zeros(3,3);-H eye(3,3)];
 [T,d]=gschur(H2,H1,'disc');T=T(:,1:d);X1=T(4:6,:)/T(1:3,:);
 norm(X1-X,1)
 Fi=inv(F);
 Hami=[Fi Fi*G;H*Fi F'+H*Fi*G];
 [T,d]=schur(Hami,'d');T=T(:,1:d);
 Fit=inv(F');
 Ham=[F+G*Fit*H -G*Fit;-Fit*H Fit];
 [T,d]=schur(Ham,'d');T=T(:,1:d);X2=T(4:6,:)/T(1:3,:);
 norm(X2-X,1)
SEE ALSO
   riccati, ric_desc, schur, gschur