File: cdfbin.man

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (51 lines) | stat: -rw-r--r-- 1,559 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
.TH cdfbin 1 "Dec 1997" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
cdfbin - cumulative distribution function Binomial distribution 
.SH CALLING SEQUENCE
.nf
[P,Q]=cdfbin("PQ",S,Xn,Pr,Ompr)
[S]=cdfbin("S",Xn,Pr,Ompr,P,Q)
[Xn]=cdfbin("Xn",Pr,Ompr,P,Q,S)
[Pr,Ompr]=cdfbin("PrOmpr",P,Q,S,Xn)
.fi 
.SH PARAMETERS
.TP 10
P,Q,S,Xn,Pr,Ompr
: six real vectors of the same size.
.TP
P,Q (Q=1-P)
: The cumulation from 0 to S of the binomial distribution.
(Probablility of S or fewer successes in XN trials each
with probability of success PR.) Input range: [0,1].
.TP
S
: The number of successes observed.
Input range: [0, XN]
Search range: [0, XN]
.TP
Xn
: The number of binomial trials.
Input range: (0, +infinity).
Search range: [1E-300, 1E300]
.TP
Pr,Ompr (Ompr=1-Pr)
: The probability of success in each binomial trial.
Input range: [0,1].
Search range: [0,1]
.SH DESCRIPTION
Calculates any one parameter of the binomial
distribution given values for the others.
.LP
Formula  26.5.24    of   Abramowitz  and    Stegun,  Handbook   of
Mathematical   Functions (1966) is   used  to reduce the  binomial
distribution  to  the  cumulative incomplete    beta distribution.
.LP
Computation of other parameters involve a seach for a value that
produces  the desired  value  of P.   The search relies  on  the
monotinicity of P with the other parameter.
.LP
From DCDFLIB: Library of Fortran Routines for Cumulative Distribution
Functions, Inverses, and Other Parameters (February, 1994)
Barry W. Brown, James Lovato and Kathy Russell. The University of
Texas.