File: cdffnc.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (58 lines) | stat: -rw-r--r-- 2,424 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
cdffnc            Scilab Group            Scilab Function            cdffnc
NAME
   cdffnc - cumulative distribution function non-central f-distribution 
  
CALLING SEQUENCE
 [P,Q]=cdffnc("PQ",F,Dfn,Dfd,Pnonc)
 [F]=cdffnc("F",Dfn,Dfd,Pnonc,P,Q);
 [Dfn]=cdffnc("Dfn",Dfd,Pnonc,P,Q,F);
 [Dfd]=cdffnc("Dfd",Pnonc,P,Q,F,Dfn)
 [Pnonc]=cdffnc("Pnonc",P,Q,F,Dfn,Dfd);
PARAMETERS
 P,Q,F,Dfn,Dfd,Pnonc
             : six real vectors of the same size.
            
 P,Q (Q=1-P)
               The integral from 0 to F of the non-central f-density. Input range:
            [0,1-1E-16).
            
 F          : Upper limit of integration of the non-central f-density.
            Input range: [0, +infinity). Search range: [0,1E300]
            
 Dfn        : Degrees of freedom of the numerator sum of squares. Input
            range: (0, +infinity). Search range: [ 1E-300, 1E300]
            
 Dfd        : Degrees of freedom of the denominator sum of squares. Must
            be in range: (0, +infinity). Input range: (0, +infinity).
            Search range: [ 1E-300, 1E300]
            
 Pnonc      : The non-centrality parameter Input range: [0,infinity)
            Search range: [0,1E4]
            
DESCRIPTION
   Calculates any one parameter of the Non-central F distribution given
  values for the others.
  
   Formula  26.6.20   of   Abramowitz   and   Stegun,  Handbook  of
  Mathematical  Functions (1966) is used to compute the cumulative
  distribution function.
  
   Computation of other parameters involve a seach for a value that produces
   the desired  value  of P.   The search relies  on  the monotinicity of P
  with the other parameter.
  
   The computation time  required for this  routine is proportional to the
  noncentrality  parameter  (PNONC).  Very large  values of this parameter
  can consume immense  computer resources.  This is why the search range is
  bounded by 10,000.
  
   The  value  of the  cumulative  noncentral F distribution is not
  necessarily monotone in either degrees  of freedom.  There  thus may be
  two values that provide a given  CDF value.  This routine assumes
  monotonicity  and will find  an arbitrary one of the two values.
  
   From DCDFLIB: Library of Fortran Routines for Cumulative Distribution
  Functions, Inverses, and Other Parameters (February, 1994) Barry W.
  Brown, James Lovato and Kathy Russell. The University of Texas.