File: cdfnor.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (48 lines) | stat: -rw-r--r-- 2,005 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
cdfnor            Scilab Group            Scilab Function            cdfnor
NAME
   cdfnor - cumulative distribution function normal distribution 
  
CALLING SEQUENCE
 [P,Q]=cdfnor("PQ",X,Mean,Std)
 [X]=cdfnor("X",Mean,Std,P,Q)
 [Mean]=cdfnor("Mean",Std,P,Q,X)
 [Std]=cdfnor("Std",P,Q,X,Mean)
PARAMETERS
 P,Q,X,Mean,Std
             : six real vectors of the same size.
            
 P,Q (Q=1-P)
             : The integral from -infinity to X of the normal density. Input range:
            (0,1].
            
 X          :Upper limit of integration of the normal-density. Input
            range: ( -infinity, +infinity)
            
 Mean       :  The mean of the normal density. Input range: (-infinity,
            +infinity)
            
 Sd         :  Standard Deviation of the normal density. Input range: (0,
            +infinity).
            
DESCRIPTION
   Calculates any one parameter of the normal distribution given values for
  the others.
  
   A slightly modified version of ANORM from Cody, W.D. (1993). "ALGORITHM
  715: SPECFUN - A Portabel FORTRAN Package of Special Function Routines
  and Test Drivers" acm Transactions on Mathematical Software. 19, 22-32.
  is used to calulate the  cumulative standard normal distribution.
  
   The rational functions from pages  90-95  of Kennedy and Gentle,
  Statistical  Computing,  Marcel  Dekker, NY,  1980 are  used  as starting
  values to Newton's Iterations which compute the inverse standard normal. 
  Therefore no  searches  are necessary for  any parameter.  For X < -15,
  the asymptotic expansion for the normal is used  as the starting value in
  finding the inverse standard normal. This is formula 26.2.12 of
  Abramowitz and Stegun.  The normal density is proportional to exp( - 0.5
  * (( X - MEAN)/SD)**2)
  
   From DCDFLIB: Library of Fortran Routines for Cumulative Distribution
  Functions, Inverses, and Other Parameters (February, 1994) Barry W.
  Brown, James Lovato and Kathy Russell. The University of Texas.