1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
.TH cdfnor 1 "Dec 1997" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
cdfnor - cumulative distribution function normal distribution
.SH CALLING SEQUENCE
.nf
[P,Q]=cdfnor("PQ",X,Mean,Std)
[X]=cdfnor("X",Mean,Std,P,Q)
[Mean]=cdfnor("Mean",Std,P,Q,X)
[Std]=cdfnor("Std",P,Q,X,Mean)
.fi
.SH PARAMETERS
.TP 10
P,Q,X,Mean,Std
: six real vectors of the same size.
.TP
P,Q (Q=1-P)
: The integral from -infinity to X of the normal density.
Input range: (0,1].
.TP
X
:Upper limit of integration of the normal-density.
Input range: ( -infinity, +infinity)
.TP
Mean
: The mean of the normal density.
Input range: (-infinity, +infinity)
.TP
Sd
: Standard Deviation of the normal density.
Input range: (0, +infinity).
.SH DESCRIPTION
Calculates any one parameter of the normal
distribution given values for the others.
.LP
A slightly modified version of ANORM from
Cody, W.D. (1993). "ALGORITHM 715: SPECFUN - A Portabel FORTRAN
Package of Special Function Routines and Test Drivers"
acm Transactions on Mathematical Software. 19, 22-32.
is used to calulate the cumulative standard normal distribution.
.LP
The rational functions from pages 90-95 of Kennedy and Gentle,
Statistical Computing, Marcel Dekker, NY, 1980 are used as
starting values to Newton's Iterations which compute the inverse
standard normal. Therefore no searches are necessary for any
parameter.
For X < -15, the asymptotic expansion for the normal is used as
the starting value in finding the inverse standard normal.
This is formula 26.2.12 of Abramowitz and Stegun.
The normal density is proportional to
exp( - 0.5 * (( X - MEAN)/SD)**2)
.LP
From DCDFLIB: Library of Fortran Routines for Cumulative Distribution
Functions, Inverses, and Other Parameters (February, 1994)
Barry W. Brown, James Lovato and Kathy Russell. The University of
Texas.
|