1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
.TH xaxis 2 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
xaxis - draw an axis
.SH CALLING SEQUENCE
.nf
xaxis(alpha,nsteps,size,init)
.fi
.SH PARAMETERS
.TP 8
alpha
: real, slope in degree of the axis.
.TP
nsteps
: real vector of size 2, number of big and small intervals.
.TP
size
: real vector of size 3, size of the small intervals, and small and big tics.
.TP
init
: real vector of size 2, origin of the axis.
.SH DESCRIPTION
\fVxaxis\fR draws an axis.
The direction of the axis is given by
\fValpha\fR in degree.
\fVinit=[x0 y0]\fR is the initial point of the axis.
\fVnsteps=[n1,n2]\fR gives the
number of big and small intervals separated by tics.
\fVsize=[s1,s2,c1]\fR where \fVs1\fR gives
the size of the small intervals, \fVs2\fR gives the size of the small tics
along the axis and
\fVs2*c1\fR gives the size of the big tics. All the sizes are given using the
current x-scale and y-scale and are given as dimensions along the drawn axis.
.LP
.nf
example : n1=3, n2=2, alpha=0
(s2*c1)
| (s2) | | |
|______|_____|_____|______|_____|_____|
s1
.fi
.SH EXAMPLE
.nf
x=[-%pi:0.1:%pi]';
// plot without axis
plot2d(x,sin(x),1,"010"," ",[-4 -1 4 1])
// draw x axis
xpoly([-4 4],[0 0],"lines")
xaxis(0,[2 2],[2 0.1 3],[-4 0])
xstring(-4.1,-0.25,"-4"); xstring(-0.2,-0.1,"0"); xstring(4,-0.25,"4")
// draw y axis
xpoly([0 0],[-1 1],"lines")
xaxis(90,[2 2],[0.5 0.025 3],[0 1])
xstring(-0.5,-1.05,"-1"); xstring(-0.35,0.95,"1")
.fi
.SH AUTHOR
J.Ph.C.
|