File: penlaur.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (49 lines) | stat: -rw-r--r-- 1,264 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
penlaur           Scilab Group           Scilab Function            penlaur
NAME
   penlaur - Laurent coefficients of matrix pencil
  
CALLING SEQUENCE
 [Si,Pi,Di,order]=penlaur(Fs)
 [Si,Pi,Di,order]=penlaur(E,A)
PARAMETERS
 Fs           : a regular pencil s*E-A
              
 E, A         : two real square matrices
              
 Si,Pi,Di     : three real square matrices
              
 order        : integer
              
DESCRIPTION
   computes the first Laurent coefficients of (s*E-A)^-1 at infinity.
  
   (s*E-A)^-1 = ... + Si/s - Pi - s*Di + ... at s = infinity.
  
   order = order of the singularity (order=index-1).
  
   The matrix pencil Fs=s*E-A should be invertible.
  
   For a index-zero pencil, Pi, Di,... are zero and Si=inv(E).
  
   For a index-one pencil (order=0),Di =0.
  
   For higher-index pencils, the terms  -s^2 Di(2), -s^3 Di(3),...  are
  given by:
  
    Di(2)=Di*A*Di,  Di(3)=Di*A*Di*A*Di  (up to Di(order)).
  
REMARK
   Experimental version: troubles when bad conditioning of so*E-A
  
EXAMPLE
 F=randpencil([],[1,2],[1,2,3],[]);
 F=rand(6,6)*F*rand(6,6);[E,A]=pen2ea(F);
 [Si,Pi,Di]=penlaur(F);
 [Bfs,Bis,chis]=glever(F);
 norm(coeff(Bis,1)-Di,1)
SEE ALSO
   glever, pencan, rowshuff
  
AUTHOR
   F. D. (1988,1990)