1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  
     | 
    
      quaskro           Scilab Group           Scilab Function            quaskro
NAME
   quaskro - quasi-Kronecker form
  
CALLING SEQUENCE
 [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F)
 [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A)
 [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F,tol)
 [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A,tol)
PARAMETERS
 F    : real matrix pencil F=s*E-A  (s=poly(0,'s'))
      
 E,A  : two real matrices of same dimensions
      
 tol  : a real number (tolerance, default value=1.d-10)
      
 Q,Z  : two square orthogonal matrices
      
 Qd,Zd
       : two vectors of integers
      
 numbeps
       : vector of integers
      
DESCRIPTION
   Quasi-Kronecker form of matrix pencil: quaskro computes two orthogonal
  matrices Q, Z which put the pencil F=s*E -A into upper-triangular form:
  
 
            | sE(eps)-A(eps) |        X       |      X     |
            |----------------|----------------|------------|
            |        O       | sE(inf)-A(inf) |      X     |
 Q(sE-A)Z = |=================================|============|
            |                                 |            |
            |                O                | sE(r)-A(r) |
 
   The dimensions of the blocks are given by:
  
   eps=Qd(1) x Zd(1), inf=Qd(2) x Zd(2), r = Qd(3) x Zd(3)
  
   The inf block contains the infinite modes of the pencil.
  
   The f block contains the finite modes of the pencil
  
   The structure of epsilon blocks are given by:
  
   numbeps(1) = # of eps blocks of size 0 x 1
  
   numbeps(2) = # of eps blocks of size 1 x 2
  
   numbeps(3) = # of eps blocks of size 2 x 3     etc...
  
   The complete (four blocks) Kronecker form is given by the function
  kroneck which calls quaskro on the (pertransposed) pencil sE(r)-A(r).
  
   The code is taken from T. Beelen
  
SEE ALSO
   kroneck, gschur, gspec   
  
 
     |