File: spaninter.man

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (49 lines) | stat: -rw-r--r-- 1,164 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
.TH spaninter 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an 
.SH NAME
spaninter - subspace intersection
.SH CALLING SEQUENCE
.nf
[X,dim]=spaninter(A,B [,tol])  
.fi
.SH PARAMETERS
.TP 10
A, B
: two real or complex matrices with equal number of rows
.TP
X
: orthogonal or unitary square matrix
.TP
dim 
: integer, dimension of subspace range(\fVA\fR) inter range(\fVB\fR)
.SH DESCRIPTION
.Vb [X,dim]=spaninter(A,B)
computes the intersection of range(\fVA\fR) and range(\fVB\fR).
.LP
The first \fVdim\fR columns of \fVX\fR span this intersection i.e.
\fVX(:,1:dim)\fR is an orthogonal basis for 
.IG
range(\fVA\fR) inter range(\fVB\fR)
.FI
.LA \mbox{${\cal R}(A) \cap {\cal R}(B)$}
.LP 
In the \fVX\fR basis \fVA\fR and \fVB\fR are respectively represented by:
.LP
\fVX'*A\fR and \fVX'*B\fR.
.LP
\fVtol\fR is a threshold (\fVsqrt(%eps)\fR is the default value).
.SH EXAMPLE
.nf
A=rand(5,3)*rand(3,4);     // A is 5 x 4, rank=3
B=[A(:,2),rand(5,1)]*rand(2,2);
[X,dim]=spaninter(A,B);
X1=X(:,1:dim);    //The intersection
svd(A),svd([X1,A])   // X1 in span(A)
svd(B),svd([B,X1])   // X1 in span(B)
.fi
.SH SEE ALSO
spanplus, spantwo
.SH AUTHOR
F. D.