File: cycle_basis.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (43 lines) | stat: -rw-r--r-- 1,565 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
cycle_basis        Scilab Group        Scilab function          cycle_basis
NAME
   cycle_basis - basis of cycle of a simple undirected graph
  
CALLING SEQUENCE
 spc = cycle_basis(g)
PARAMETERS
 g  : graph list
    
 spc
     : sparse matrix
    
DESCRIPTION
   First a spanning tree is found by using min_weight_tree and then used to 
  find all fundamental cycles with respect to this tree. They are returned
  as a  set of cycles, each cycle being represented by a set of edges.
  These cycles are returned in a sparse matrix spc: each line of this
  matrix corresponds to a cycle.  The graph g is supposed to be a simple
  undirected and connected graph (cycle_basis does not check that the graph
  is simple, use  graph_simp before calling it if necessary).
  
EXAMPLE
 ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17];
 he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15];
 gt=make_graph('foo',1,17,ta,he);
 gt('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642];
 gt('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301];
 gt('edge_color')=modulo([1:(edge_number(gt))],15)+1;
 gt('node_diam')=[1:(gt('node_number'))]+20;
 show_graph(gt);
 g=graph_simp(gt);
 g('edge_color')=modulo([1:(edge_number(g))],15)+1;
 g('node_diam')=gt('node_diam');
 g('default_edge_hi_width')=12;
 show_graph(g);
 spc=cycle_basis(g);
 for kk=1:(size(spc,1)),
   aaa=spc(kk,:);aaa=full(aaa);aaa(aaa==0)=[];
   show_arcs(aaa);
 end;
SEE ALSO
   min_weight_tree, graph_simp