File: graph_union.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (44 lines) | stat: -rw-r--r-- 1,431 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
graph_union        Scilab Group        Scilab function          graph_union
NAME
   graph_union - union of two graphs
  
CALLING SEQUENCE
 g2 = graph_union(g,g1)
PARAMETERS
 g  : graph list
    
 g1 : graph list
    
 g2 : graph list of the new graph 
    
DESCRIPTION
   graph_union creates a new graph g2. The node set of g2 is the union (in
  the usual sense) of the node sets of g and g1. g2 has an edge for each
  edge of g and an edge for each edge of  g1. The edges of g and g1 having
  the same endpoints are kept  and in this case g2 has multiple edges.
  
EXAMPLE
 ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17];
 he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15];
 g=make_graph('foo',1,17,ta,he);
 g('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642];
 g('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301];
 g('edge_color')=modulo([1:(edge_number(g))],15)+1;
 g('node_diam')=[1:(g('node_number'))]+20;
 g('node_name')=['A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O' 'P' 'Q'];
 show_graph(g);
 l=netwindows(); nw=l(2);
 v=[7 8 9 10 11 12 13];
 show_nodes(v);
 g1=subgraph(v,'nodes',g);
 show_graph(g1,'new');
 v=[1 2 5 6 7 8 9 10];
 netwindow(nw);
 show_nodes(v);
 g2=subgraph(v,'nodes',g);
 show_graph(g2,'new');
 g=graph_union(g1,g2);
 show_graph(g,'new');
SEE ALSO
   supernode, subgraph