1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
perfect_match Scilab Group Scilab function perfect_match
NAME
perfect_match - min-cost perfect matching
CALLING SEQUENCE
[cst,nmatch] = perfect_match(g,arcost)
PARAMETERS
g : graph list
arcost
: integer row vector
cst
: integer
nmatch
: integer row vector
DESCRIPTION
perfect_match finds a perfect min-cost matching for the graph g. g must
be an undirected graph with an even number of nodes. arcost is the vector
of the (integer) costs of the arcs (the dimension of arcost is twice the
number of edges of the graph). The output is the vector nmatch of the
perfect matching and the corresponding cost cst.
EXAMPLE
ta=[27 27 3 12 11 12 27 26 26 25 25 24 23 23 21 22 21 20 19 18 18];
ta=[ta 16 15 15 14 12 9 10 6 9 17 8 17 10 20 11 23 23 12 18 28];
he=[ 1 2 2 4 5 11 13 1 25 22 24 22 22 19 13 13 14 16 16 9 16];
he=[he 10 10 11 12 2 6 5 5 7 8 7 9 6 11 4 18 13 3 28 17];
n=28;
g=make_graph('foo',0,n,ta,he);
xx=[46 120 207 286 366 453 543 544 473 387 300 206 136 250 346 408];
g('node_x')=[xx 527 443 306 326 196 139 264 55 58 46 118 513];
yy=[36 34 37 40 38 40 35 102 102 98 93 96 167 172 101 179];
g('node_y')=[yy 198 252 183 148 172 256 259 258 167 109 104 253];
show_graph(g);m2=2*size(ta,2);
arcost=round(100.*rand(1,m2));
[cst,nmatch] = perfect_match(g,arcost);
sp=sparse([ta' he'],[1:size(ta,2)]',[n,n]);
sp1=sparse([[1:n]' nmatch'],ones(1,size(nmatch,2))',[n,n]);
[ij,v,mn]=spget(sp.*sp1);
show_arcs(v');
SEE ALSO
best_match
|