File: salesman.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (36 lines) | stat: -rw-r--r-- 1,192 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
salesman          Scilab Group          Scilab function            salesman
NAME
   salesman - solves the travelling salesman problem
  
CALLING SEQUENCE
 cir = salesman(g,[nstac])
PARAMETERS
 g  : graph list
    
 nstac
     : integer
    
 cir
     : integer row vector
    
DESCRIPTION
   salesman solves the travelling salesman problem. g is a directed  graph;
  nstac is an optional integer which is a given bound for the allowed
  memory size for solving this problem. Its value is 100*n*n by  default
  where n is the number of nodes.
  
EXAMPLE
 ta=[2  1 3 2 2 4 4 5 6 7 8 8 9 10 10 10 10 11 12 13 13 14 15 16 16 17 17];
 he=[1 10 2 5 7 3 2 4 5 8 6 9 7 7 11 13 15 12 13  9 14 11 16 1 17 14 15];
 g=make_graph('foo',0,17,ta,he);
 g('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642];
 g('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301];
 g('node_diam')=[1:(g('node_number'))]+20;
 show_graph(g);
 g1=make_graph('foo1',1,17,[ta he],[he ta]);
 m=arc_number(g1);
 g1('edge_length')=5+round(30*rand(1,m));
 cir = salesman(g1);
 ii=find(cir > edge_number(g)); 
 if(ii <> []) then cir(ii)=cir(ii)-edge_number(g);end;
 show_arcs(cir);