File: salesman.man

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (40 lines) | stat: -rw-r--r-- 1,205 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
.TH salesman 1 "September 1996" "Scilab Group" "Scilab function"
.so ../sci.an
.SH NAME
salesman - solves the travelling salesman problem
.SH CALLING SEQUENCE
.nf
cir = salesman(g,[nstac])
.fi
.SH PARAMETERS
.TP 2
g
: graph list
.TP 6
nstac
: integer
.TP 4
cir
: integer row vector
.SH DESCRIPTION
\fVsalesman\fR solves the travelling salesman problem. \fVg\fR is a directed 
graph; \fVnstac\fR is an optional integer which is a given bound for
the allowed memory size for solving this problem. Its value is 100*n*n by 
default where n is the number of nodes.
.SH EXAMPLE
.nf
ta=[2  1 3 2 2 4 4 5 6 7 8 8 9 10 10 10 10 11 12 13 13 14 15 16 16 17 17];
he=[1 10 2 5 7 3 2 4 5 8 6 9 7 7 11 13 15 12 13  9 14 11 16 1 17 14 15];
g=make_graph('foo',0,17,ta,he);
g('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642];
g('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301];
g('node_diam')=[1:(g('node_number'))]+20;
show_graph(g);
g1=make_graph('foo1',1,17,[ta he],[he ta]);
m=arc_number(g1);
g1('edge_length')=5+round(30*rand(1,m));
cir = salesman(g1);
ii=find(cir > edge_number(g)); 
if(ii <> []) then cir(ii)=cir(ii)-edge_number(g);end;
show_arcs(cir);
.fi