File: odedc.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (103 lines) | stat: -rw-r--r-- 3,606 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
odedc            Scilab Group            Scilab Function              odedc
NAME
   odedc - discrete/continuous ode solver
  
CALLING SEQUENCE
 yt=odedc(y0,nd,stdel,t0,t,f)
PARAMETERS
 y0      : real column vector (initial conditions), y0=[y0c;y0d] where y0d
         has nd components.
         
 nd      : integer, dimension of y0d
         
 stdel   : real vector with one or two entries, stdel=[h, delta] (with
         delta=0 as default value).
         
 t0      : real scalar (initial time).
         
 t       : real (row) vector, instants where yt is calculated .
         
 f       : external i.e. function or character string or list with calling
         sequence: yp=f(t,yc,yd,flag).
         
DESCRIPTION
   y=odedc([y0c;y0d],nd,[h,delta],t0,t,f) computes the solution of a mixed
  discrete/continuous system.  The discrete system state yd_k is embedded
  into a  piecewise constant yd(t) time function as follows: 
  
 yd(t)=yd_k for t in 
 [t_k=delay+k*h,t_(k+1)=delay+(k+1)*h[ (with delay=h*delta).
    The simulated equations are now:
  
 dyc/dt=f(t,yc(t),yd(t),0),  for t in [t_k,t_(k+1)[
 yc(t0)=y0c
   and at instants t_k the discrete variable yd is updated by:
  
 yd(t_k+)=f(yc(t_k-),yd(t_k-),1)
    Note that, using the definition of yd(t) the last equation gives 
  
 yd_k = f (t_k,yc(t_k-),yd(t_(k-1)),1)  (yc is time-continuous: yc(t_k-)=yc(tk))
    The calling parameters of f are fixed: ycd=f(t,yc,yd,flag); this
  function must return either the derivative of the vector yc if flag=0 or
  the update of yd if flag=1. 
  
   ycd=dot(yc) must be a vector with same dimension as yc  if flag=0 and
  ycd=update(yd) must be a vector with same  dimension as yd if flag=1.
  
   t is a vector of instants where the solution y is computed.
  
   y is the vector y=[y(t(1)),y(t(2)),...]. This function can be called with
  the same optional parameters as the ode function (provided nd and stdel
  are given in the calling sequence as second and third parameters). In
  particular integration flags, tolerances can be set. Optional parameters
  can be set by the odeoptions function.
  
   An example for calling an external routine is given in directory 
  SCIDIR/default/fydot2.f   External routines can be dynamically linked
  (see link).
  
EXAMPLE
 //Linear system with switching input
 deff('xdu=phis(t,x,u,flag)','if flag==0 then xdu=A*x+B*u; else xdu=1-u;end');
 x0=[1;1];A=[-1,2;-2,-1];B=[1;2];u=0;nu=1;stdel=[1,0];u0=0;t=0:0.05:10;
 xu=odedc([x0;u0],nu,stdel,0,t,phis);x=xu(1:2,:);u=xu(3,:);
 nx=2;
 plot2d1('onn',t',x',[1:nx],'161');
 plot2d2('onn',t',u',[nx+1:nx+nu],'000');
 //Fortran external( see fydot2.f): 
 norm(xu-odedc([x0;u0],nu,stdel,0,t,'phis'),1)
 
 //Sampled feedback 
 //
 //        |     xcdot=fc(t,xc,u)
 //  (system)   |
 //        |     y=hc(t,xc)
 //
 //
 //        |     xd+=fd(xd,y)
 //  (feedback) |
 //        |     u=hd(t,xd)
 //
 deff('xcd=f(t,xc,xd,iflag)',...
   ['if iflag==0 then '
    '  xcd=fc(t,xc,e(t)-hd(t,xd));'
    'else '
    '  xcd=fd(xd,hc(t,xc));'
    'end']);
 A=[-10,2,3;4,-10,6;7,8,-10];B=[1;1;1];C=[1,1,1];
 Ad=[1/2,1;0,1/20];Bd=[1;1];Cd=[1,1];
 deff('st=e(t)','st=sin(3*t)')
 deff('xdot=fc(t,x,u)','xdot=A*x+B*u')
 deff('y=hc(t,x)','y=C*x')
 deff('xp=fd(x,y)','xp=Ad*x + Bd*y')
 deff('u=hd(t,x)','u=Cd*x')
 h=0.1;t0=0;t=0:0.1:2;
 x0c=[0;0;0];x0d=[0;0];nd=2;
 xcd=odedc([x0c;x0d],nd,h,t0,t,f);
 norm(xcd-odedc([x0c;x0d],nd,h,t0,t,'fcd1')) // Fast calculation (see fydot2.f)
 plot2d([t',t',t'],xcd(1:3,:)');
 xset("window",2);plot2d2("gnn",[t',t'],xcd(4:5,:)');
 xset("window",0);
SEE ALSO
   ode, odeoptions, csim, external