File: insertion.man

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (248 lines) | stat: -rw-r--r-- 6,059 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
.TH insertion 1 "September 1996" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
insertion - matrix and list insertion or modification
.SH CALLING SEQUENCE
.nf
x(i,j)=a
x(i)=a
l(i)=a
l(k1)...(kn)(i)=a or l(list(k1,...,kn,i))=a
l(k1)...(kn)(i,j)=a   or l(list(k1,...,kn,list(i,j))=a
.fi
.SH PARAMETERS
.TP 15
x
: matrix  of any  kind (constant, sparse, polynomial,...)
.TP 15
l
: list 
.TP 15
i,j
: indices
.TP
k1,...kn
: indices  with integer value
.TP
a
: new entry value
.SH DESCRIPTION
.TP 5
MATRIX CASE
 
\fVi\fR and \fVj\fR, may be:
.RS
.TP 3
-
real scalars or vectors or matrices with positive elements. 
.RS
.TP 3
* 
if \fVa\fR is a matrix with dimensions \fV(size(i,'*'),size(j,'*'))\fR
\fVx(i,j)=a\fR returns a new \fVx\fR matrix such as
\fVx(int(i(l)),int(j(k)))=a(l,k) \fR for  \fVl\fR from 1 to \fVsize(i,'*')\fR and
\fVk\fR from 1 to \fVsize(j,'*')\fR, other initial entries of \fVx\fR
are unchanged. 
.LP
if \fVa\fR is a scalar  \fVx(i,j)=a\fR returns a new \fVx\fR matrix such as
\fVx(int(i(l)),int(j(k)))=a \fR for  \fVl\fR from 1 to \fVsize(i,'*')\fR and
\fVk\fR from 1 to \fVsize(j,'*')\fR, other initial entries of \fVx\fR
are unchanged. 

If \fVi\fR or  \fVj\fR maximum value exceed corresponding \fVx\fR
matrix dimension \fVx\fR is previously extended to the required
dimensions with zeros entries for standard matrices, 0 length character
string for string matrices and false values for boolean matrices.

.TP 3
*
\fVx(i,j)=[]\fR kills rows specified by \fVi\fR if \fVj\fR matches all
columns of \fVx\fR or kills columns specified by \fVj\fR if \fVi\fR matches all
rows of \fVx\fR. In other cases \fVx(i,j)=[]\fR produce an error.
.TP 3
*
\fVx(i)=a\fR  with \fVa\fR a vector returns a new \fVx\fR matrix such as
\fVx(int(i(l)))=a(l)\fR for  \fVl\fR from 1 to \fVsize(i,'*')\fR ,
other initial entries of \fVx\fR are unchanged.
.LP
\fVx(i)=a\fR  with \fVa\fR a scalar returns a new \fVx\fR matrix such as
\fVx(int(i(l)))=a\fR for  \fVl\fR from 1 to \fVsize(i,'*')\fR ,
other initial entries of \fVx\fR are unchanged.
.LP
If \fVi\fR maximum value exceed  \fVsize(x,1)\fR, \fVx\fR is
previously extended to the required dimension with zeros entries for
standard matrices, 0 length character string for string matrices and
false values for boolean matrices. 

.RS
.TP 3
if
\fVx\fR is a 1x1 matrix
\fVa\fR may be a row (respectively a column)  vector with  dimension
\fVsize(i,'*')\fR. Resulting \fVx\fR matrix is a row (respectively a column) vector
.TP 3
if
\fVx\fR is a row vector
\fVa\fR must be a row vector with  dimension  \fVsize(i,'*')\fR
.TP 3
if
\fVx\fR is a column vector
\fVa\fR must be a column vector with  dimension  \fVsize(i,'*')\fR
.TP 3
if
\fVx\fR is a general matrix
\fVa\fR must be a row or column vector with  dimension
\fVsize(i,'*')\fR and \fVi\fR maximum value cannot exceed \fVsize(x,'*')\fR,
.RE
.TP 3
*
\fVx(i)=[]\fR kills entries specified by \fVi\fR.
.RE
-
the \fV:\fR symbol which stands for "all elements". 
.RS
.TP 3
* 
\fVx(i,:)=a\fR is interpreted as \fVx(i,1:size(x,2))=a\fR 
.TP
*
\fVx(:,j)=a\fR is interpreted as \fVx(1:size(x,1),j)=a\fR 
.TP
* 
\fVx(:)=a\fR returns in \fVx\fR the  \fVa\fR matrix reshaped
according to x dimensions. \fVsize(x,'*')\fR must be equal to \fVsize(a,'*')\fR
.RE

.TP
-
vector of boolean. If an index (\fVi\fR  or \fVj\fR )is a vector of
booleans it is interpreted as \fVfind(i)\fR or respectively  \fVfind(j)\fR 
.TP
-
a polynomial.  If an index (\fVi\fR  or \fVj\fR )is a vector of
polynomials or implicit polynomial vector it is interpreted as
\fVhorner(i,m)\fR or respectively  \fVhorner(j,n)\fR where \fVm\fR
and \fVn\fR are associated \fVx\fR dimensions.

Even if this feature works for all polynomials, it is recommended to
use polynomials in \fV$\fR for readability.  
.RE
.TP 
LIST OR TLIST CASE
If they are present the \fVki\fR give the path to a sub-list entry of
\fVl\fR data structure. They allow a recursive extraction without
intermediate copies.

The  \fVl(k1)...(kn)(i)=a\fR and  \fVl(list(k1,...,kn,i)=a)\fR instructions are interpreted as:

\fVlk1   = l(k1)\fR

\fV ..   = ..    \fR

\fVlkn   = lkn-1(kn)\fR

\fV lkn(i) = a\fR

\fVlkn-1(kn) = lkn\fR

\fV ..   = ..    \fR

\fVl(k1) = lk1\fR

And the  \fVl(k1)...(kn)(i,j)=a\fR and \fVl(list(k1,...,kn,list(i,j))=a\fR
instructions are  interpreted as:

\fVlk1   = l(k1)\fR

\fV ..   = ..    \fR

\fVlkn   = lkn-1(kn)\fR

\fVlkn(i,j) = a\fR

\fVlkn-1(kn) = lkn\fR

\fV ..   = ..    \fR

\fVl(k1) = lk1\fR
.RS
.TP
\fVi\fR may be :
.RS
.TP 3
-
a real non negative scalar.
 \fVl(0)=a\fR adds an entry on the "left" of the list

 \fVl(i)=a\fR sets the \fVi\fR entry of the list \fVl\fR to
\fVa\fR. if \fVi>size(l)\fR, \fVl\fR is previously extended with zero
length entries (undefined).

 \fVl(i)=null()\fR suppress the \fVi\fRth list entry.
.TP
-
a polynomial.  If \fVi\fR  is a  polynomial  it is interpreted as
\fVhorner(i,m)\fR where \fVm=size(l)\fR.

Even if this feature works for all polynomials, it is recommended to
use polynomials in \fV$\fR for readability.  
.RE
\fVk1,..kn\fR may be :

.TP 3
-
real positive scalar. 

.TP
-
a polynomial,interpreted as
\fVhorner(ki,m)\fR where \fVm\fR is the corresponding sub-list size.

.TP
- a character string associated with a sub-list entry name.
.RE
.SH REMARKS
For soft coded matrix types such as rational functions and state space
linear systems, \fVx(i)\fR syntax may not be used for vector entry
insertion due to confusion with list entry insertion. \fVx(1,j)\fR
or \fVx(i,1)\fR syntax must be used.

.SH EXAMPLE
.nf
// MATRIX CASE
a=[1 2 3;4 5 6]
a(1,2)=10
a([1 1],2)=[-1;-2]
a(:,1)=[8;5]
a(1,3:-1:1)=[77 44 99]
a(1)=%s
a(6)=%s+1
a(:)=1:6
a([%t %f],1)=33
a(1:2,$-1)=[2;4]
a($:-1:1,1)=[8;7]
a($)=123
//
x='test'
x([4 5])=['4','5']
//
b=[1/%s,(%s+1)/(%s-1)]
b(1,1)=0
b(1,$)=b(1,$)+1
b(2)=[1 2] // the numerator
// LIST OR TLIST CASE
l=list(1,'qwerw',%s)
l(1)='Changed'
l(0)='Added'
l(6)=['one more';'added']
//
//
dts=list(1,tlist(['x';'a';'b'],10,[2 3]));
dts(2)('a')=33
dts(2)('b')(1,2)=-100
.fi
.SH SEE ALSO
find, horner, parents, extraction