File: power.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (52 lines) | stat: -rw-r--r-- 1,371 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
power            Scilab Group            Scilab Function              power
NAME
   power - power operation  (^,.^) 
  
CALLING SEQUENCE
 t=A^b
 t=A**b
 t=A.^b
PARAMETERS
 A,t  : scalar, polynomial or rational matrix.
      
 b    :a scalar, a vector or a scalar matrix.
      
DESCRIPTION
 (A:square)^(b:scalar)
       : If A is a square matrix and b is a scalar then  A^b is the matrix A to
      the power b.
      
 (A:matrix).^(b:scalar)
       : If b is a scalar and A a matrix then A.^b  is the matrix formed by the
      element of A to the power b (elementwise power). If A is a vector and
      b is a scalar then  A^b and A.^b performs the same operation (i.e
      elementwise power).
      
 (A:scalar).^(b:matrix)
       If A is a scalar  and b is a scalar matrix (or vector) A^b and A.^b are
      the matrices (or vectors) formed by   a^(b(i,j)).
      
 (A:matrix).^(b:matrix)
       If A and b  are vectors (matrices) with compatible dimensions A.^b is the
       A(i)^b(i) vector (A(i,j)^b(i,j) matrix).
      
     Notes:
      
      - For square matrices A^p is computed through successive matrices
      multiplications if p is a positive integer, and by diagonalization if
      not.
      
      - ** and ^ operators are synonyms.
      
EXAMPLE
 A=[1 2;3 4];
 A^2.5,
 A.^2.5
 (1:10)^2
 (1:10).^2
 
 s=poly(0,'s')
 s^(1:10)
SEE ALSO
   exp