File: power.man

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (59 lines) | stat: -rw-r--r-- 1,423 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
.TH power 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
power - power operation  (^,.^) 
.SH CALLING SEQUENCE
.nf
t=A^b
t=A**b
t=A.^b
.fi
.SH PARAMETERS
.TP
A,t
: scalar, polynomial or rational matrix.
.TP
b
:a scalar, a vector or a scalar matrix.
.SH DESCRIPTION
.TP
(A:square)^(b:scalar)
: If \fVA\fR is a square matrix and \fVb\fR is a scalar then 
\fVA^b\fR is the matrix \fVA\fR to the power \fVb\fR.
.TP
(A:matrix).^(b:scalar)
: If \fVb\fV is a scalar and \fVA\fR a matrix then \fVA.^b\fR 
is the matrix formed by the element of \fVA\fR to the power \fVb\fR (elementwise power). If \fVA\fR is a vector and \fVb\fR is a scalar then 
\fVA^b\fR and \fVA.^b\fR performs the same operation (i.e elementwise power).
.TP
(A:scalar).^(b:matrix)
If \fVA\fR is a scalar  and \fVb\fR is a scalar matrix (or vector) \fVA^b\fR and
\fVA.^b\fR are the matrices (or vectors) formed by  \fV a^(b(i,j))\fR.
.TP
(A:matrix).^(b:matrix)
If \fVA\fR and \fVb\fR  are vectors (matrices) with compatible dimensions
\fVA.^b\fR is the  \fVA(i)^b(i)\fR vector (\fVA(i,j)^b(i,j)\fR matrix).
.LP 
Notes:
.IP -
For square matrices \fVA^p\fR is computed through successive
matrices multiplications if \fVp\fR is a positive integer, and by
diagonalization if not.
.IP -
\fV**\fR and \fV^\fR operators are synonyms.
.SH EXAMPLE
.nf
A=[1 2;3 4];
A^2.5,
A.^2.5
(1:10)^2
(1:10).^2

s=poly(0,'s')
s^(1:10)
.fi
.SH SEE ALSO
exp