File: leqr.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (53 lines) | stat: -rw-r--r-- 1,667 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
lqr              Scilab Group              Scilab Function              lqr
NAME
   leqr - H-infinity LQ gain (full state)
  
CALLING SEQUENCE
 [K,X,err]=leqr(P12,Vx)
PARAMETERS
 P12        : syslin list
            
 Vx         : symmetric nonnegative matrix (should be small enough)
            
 K,X        : two real matrices
            
 err        : a real number (l1 norm of LHS of Riccati equation)
            
DESCRIPTION
   leqr  computes the linear suboptimal H-infinity LQ full-state gain for
  the plant P12=[A,B2,C1,D12] in continuous or discrete time.
  
   P12 is a syslin list (e.g. P12=syslin('c',A,B2,C1,D12)).
  
       [C1' ]               [Q  S]
       [    ]  * [C1 D12] = [    ]
       [D12']               [S' R]
   Vx is related to the variance matrix of the noise w perturbing x;
  (usually Vx=gama^-2*B1*B1').
  
   The gain K is such that A + B2*K is stable.
  
   X is the stabilizing solution of the Riccati equation.
  
   For a continuous plant:
  
 (A-B2*inv(R)*S')'*X+X*(A-B2*inv(R)*S')-X*(B2*inv(R)*B2'-Vx)*X+Q-S*inv(R)*S'=0
 K=-inv(R)*(B2'*X+S)
   For a discrete time plant:
  
 X-(Abar'*inv((inv(X)+B2*inv(R)*B2'-Vx))*Abar+Qbar=0
 K=-inv(R)*(B2'*inv(inv(X)+B2*inv(R)*B2'-Vx)*Abar+S')
   with Abar=A-B2*inv(R)*S' and Qbar=Q-S*inv(R)*S'
  
   The 3-blocks matrix pencils associated with these Riccati equations are:
  
                discrete                        continuous
    |I  -Vx  0|   | A    0    B2|       |I   0   0|   | A    Vx    B2|
   z|0   A'  0| - |-Q    I    -S|      s|0   I   0| - |-Q   -A'   -S |
    |0   B2' 0|   | S'   0     R|       |0   0   0|   | S'   -B2'   R|
SEE ALSO
   lqr
  
AUTHOR
   F.D.