File: faurre.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (36 lines) | stat: -rw-r--r-- 1,101 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
faurre            Scilab Group            Scilab Function            faurre
NAME
   faurre - filter computation by simple Faurre algorithm
  
CALLING SEQUENCE
 [P,R,T]=faurre(n,H,F,G,R0)
PARAMETERS
 n            : number of iterations.
              
 H, F, G      : estimated triple from the covariance sequence of y.
              
 R0           : E(yk*yk')
              
 P            : solution of the Riccati equation after n iterations.
              
 R, T         : gain matrix of the filter.
              
DESCRIPTION
   This function computes iteratively the minimal solution of the algebraic
  Riccati equation and gives the matrices R and T of the  filter model. The
  algorithm tries to compute the solution P as the growing limit of a
  sequence of matrices Pn such that
  
                                      -1
 Pn+1=F*Pn*F'+(G-F*Pn*h')*(R0-H*Pn*H')  *(G'-H*Pn*F')
        -1
 P0=G*R0 *G'
   Note that this method may not converge,especially when F has poles near
  the unit circle. Use preferably the srfaur function.
  
AUTHOR
   G. Le V.
  
SEE ALSO
   srfaur, linquist, phc