File: iir.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (47 lines) | stat: -rw-r--r-- 1,686 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
iir              Scilab Group              Scilab Function              iir
NAME
   iir - iir digital filter
  
CALLING SEQUENCE
 [hz]=iir(n,ftype,fdesign,frq,delta)
PARAMETERS
 n          : filter order (pos. integer)
            
 ftype      : string  specifying the filter type  'lp','hp','bp','sb'
            
 fdesign    : string specifying the analog filter design 
            ='butt','cheb1','cheb2','ellip'
            
 frq        : 2-vector of discrete cut-off frequencies (i.e., 0<frq<.5).
            For lp and hp filters only frq(1) is used. For bp and sb
            filters frq(1) is the lower cut-off frequency and frq(2) is the
            upper cut-off frequency
            
 delta      : 2-vector of error values for cheb1, cheb2, and ellip filters
            where only delta(1) is used for cheb1 case, only delta(2) is
            used for cheb2 case, and delta(1) and delta(2) are both used
            for ellip case. 0<delta(1),delta(2)<1
            
           -    for cheb1 filters 1-delta(1)<ripple<1 in passband
                
           -    for cheb2 filters 0<ripple<delta(2) in stopband
                
           -    for ellip filters 1-delta(1)<ripple<1 in passband and
                0<ripple<delta(2) in stopband
                
DESCRIPTION
   function which designs an iir digital filter using analog filter designs.
  
EXAMPLE
 hz=iir(3,'bp','ellip',[.15 .25],[.08 .03]);
 [hzm,fr]=frmag(hz,256);
 plot2d(fr',hzm')
 xtitle('Discrete IIR filter band pass  0.15<fr<0.25 ',' ',' ');
 q=poly(0,'q');     //to express the result in terms of the ...
 hzd=horner(hz,1/q) //delay operator q=z^-1
SEE ALSO
   eqfir, eqiir
  
AUTHOR
   C. B.