File: wiener.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (45 lines) | stat: -rw-r--r-- 1,488 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
wiener            Scilab Group            Scilab Function            wiener
NAME
   wiener -  Wiener estimate
  
CALLING SEQUENCE
 [xs,ps,xf,pf]=wiener(y,x0,p0,f,g,h,q,r)
PARAMETERS
 f, g, h    : system matrices in the interval [t0,tf]
            
           f    =[f0,f1,...,ff], and fk is a nxn matrix
                
           g    =[g0,g1,...,gf], and gk is a nxn matrix
                
           h    =[h0,h1,...,hf], and hk is a mxn matrix
                
 q, r       : covariance matrices of dynamics and observation noise
            
           q    =[q0,q1,...,qf], and qk is a nxn matrix
                
           r    =[r0,r1,...,rf], and gk is a mxm matrix
                
 x0, p0     : initial state estimate and error variance
            
 y          : observations in the interval [t0,tf]. y=[y0,y1,...,yf], and
            yk is a column m-vector
            
 xs         : Smoothed state estimate xs= [xs0,xs1,...,xsf], and xsk is a
            column n-vector
            
 ps         : Error covariance of smoothed estimate ps=[p0,p1,...,pf], and
            pk is a nxn matrix
            
 xf         : Filtered state estimate xf= [xf0,xf1,...,xff], and xfk is a
            column n-vector
            
 pf         : Error covariance of filtered estimate pf=[p0,p1,...,pf], and
            pk is a nxn matrix
            
DESCRIPTION
   function which gives the Wiener estimate using the forward-backward
  Kalman filter formulation
  
AUTHOR
   C. B.