File: fusee.man

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (106 lines) | stat: -rw-r--r-- 1,914 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
.TH fusee 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
fusee - a set of Scilab macro for a landing rocket problem 
.SH FUSEE
.nf
[xdot]=fusee(t,x)
.fi
Dynamical motion equation for the rocket 
.SH FINIT
.nf
finit()
.fi
Initialises the following parameters for rocket landing.
.TP
k     
: The acceleration of the rocket engines
.TP
gamma 
: The moon gravity acceleration.
.TP
umax  
: the gaz ejection flow out.
.TP
mcap  
: the mass of the space capsule.
.TP
cpen  
: penalisation in the cost function of the final state.
.LP
.SH FUSEEGRAD
.nf
[ukp1]=fuseegrad(niter,ukp1,pasg)
.fi
.TP
niter
: number of gradient iteration steps.
.TP
ukp1
: initial control value ( vector of sie 135 )
.TP
pasg  
: the gradient step value.
.SH DESCRIPTION
Iterate a gradient method and returns the computed control.
.SH FUSEEP
.nf
[pdot]=fuseep(t,p)
.fi
.SH DESCRIPTION
adjoint equation for the landing rocket problem.
.SH POUSSE
.nf
[ut]=pousse(t)
.fi
return the value of a piece wise constant control 
build on the discrete control \fVuk\fR
.SH UBANG
.nf
[uk]=ubang(tf,tcom)
.fi
returns a bang-bang control, 0 form time 0 to tcom 
and 1 form tcom to tf.
.SH FCOUT
.nf
[c,xk,pk,ukp1]=fcout(tf,uk,pasg)
.fi
.SH DESCRITION
optimise the following cost function by gradient iterations.
.nf
c = -m(tf) + C*( h(tf)**2 + v(tf)**2)
.fi
.SH SFUSEE
.nf
[]=sfusee(tau,h0,v0,m0,Tf)
.fi
.SH DESCRIPTION 
computes the rocket trajectory when a bang-bang control is used 
\fVtau\fR is the commutation time.
.TP
h0 
: The initial position (high)
.TP
v0 
: The initial speed ( negative if the rocket is landing )
.TP
m0 
: The total initial mass ( capsule and fuel).
.TP
Tf 
: Time horizon.
.LP
.SH EQUAD
.SH DESCRIPTION
.nf
[xk,pk]=equad(tf,uk)
.fi
Computes the state and adjoint state of the rocket system for a given 
control \fVur\fR.
.SH TRAJ
.nf
[xt]=traj(t)
.fi
returns a piece wise value of the mass evolution.