File: portrait.cat

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (47 lines) | stat: -rw-r--r-- 1,791 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
portrait          Scilab Group          Scilab Function            portrait
NAME
   portrait - 2 dimensional phase portrait.
  
CALLING SEQUENCE
 []=portrait(f,[odem,xdim,npts,pinit])
PARAMETERS
 f    : a Scilab external which gives the field of the dynamical system.
      Hence  it can be a macro name which computes the field at time t and
      point x [y]=f(t,x,[u]) or a list list(f1,u1) where f1 is a macro of
      type [y]=f1(t,x,u) or a character string. The macro can be used to
      simulate a continuous or discrete system and in case  of discrete
      system the second parameter must be set to 'discrete'
      
 .I rest
       : The other parameters are optional. If omitted they will be asked
      interactively
      
     odem : gives the integration method to use. The value "default" can
          be used,  otherwise see ode for a complete set of possibilities
          
     npts :  a vector of size (2,10) [number-of-points,step] gives the
          step for integration  and the number of requested points. The
          solution will be calculated and drawn  for
          time=0:step:(step*[number-of-points])
          
     xdim : [xmin,xmax,ymin,ymax,zmin,zmax] the boundaries of the graphic
          frame.
          
     pinit
               : initial values for integration. A set of initial points can be
          given in a matrix
          
               pinit = [x0(1), x1(1),...., xn(1)
                        x0(2), x1(2),...., xn(2)
                        x0(3), x1(3),...., xn(3)].
DESCRIPTION
   Interactive integration and display of a 2 dimensional phase portrait of
  a dynamical system  dx/dt=f(t,x,[u]) (where u is an optional parameter )
  
EXAMPLE
 a=rand(2,2)
 deff('[ydot]=l_s(t,y)','ydot=a*y')
 portrait(l_s)
SEE ALSO
   ode