| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 
 |       subroutine dexpm1(ia,n,a,ea,iea,w,iw,ierr)
c
c!purpose
c      compute the exponential of a matrix a by the pade's
c      approximants(subroutine pade).a block diagonalization
c         is performed prior call pade.
c!calling sequence
c     subroutine dexpm1(ia,n,a,ea,iea,w,iw,ierr)
c
c     integer ia,n,iw,ierr
c     double precision a,ea,w
c     dimension a(ia,n),ea(iea,n),w(*),iw(*)
c
c      ia: the leading dimension of array a.
c      n: the order of the matrices a,ea,x,xi .
c      a: the real double precision array that contains the n*n matrix a
c      ea: the array that contains the n*n exponential of a.
c      iea : the leading dimension of array ea
c      w : work space array of size: n*(2*ia+2*n+5)
c      iw : integer work space array of size 2*n
c      ierr: =0 if the prosessus is normal.
c               =-1 if n>ia.
c               =-2 if the block diagonalization is not possible.
c               =-4 if the subroutine dpade can not computes exp(a)
c
c!auxiliary routines
c     exp abs sqrt dble real (fortran)
c     bdiag (eispack.extension)
c     balanc balinv (eispack)
c     dmmul (blas.extension)
c     pade
c! originator
c     j roche laboratoire d'automatique de grenoble
c!
      integer ia,n,iw,ierr
      double precision a,ea,w
      dimension a(ia,*),ea(iea,*),w(*),iw(*)
c internal variables
c
      integer i,j,k,ni,nii,ndng
      double precision anorm,alpha,bvec,bbvec,rn,zero,c(41)
      logical fail
c
      common /dcoeff/ c,ndng
      data zero /0.0d+0/
      ndng=-1
c
      ierr=0
      kscal=1
      kx=kscal+n
      kxi=kx+n*ia
      ker=kxi+n*ia
      kei=ker+n
      kw=kei+n
c
      kbs=1
      kiw=kbs+n
c
      if (n.gt.ia) go to 110
c
c  balance the matrix a
c
c
c  compute the norm one of a.
c
      anorm = 0.0d+0
      do 20 j=1,n
         alpha = zero
         do 10 i=1,n
            alpha = alpha + abs(a(i,j))
   10    continue
         if (alpha.gt.anorm) anorm = alpha
   20 continue
      if (anorm.eq.0.0d0) then
c     null matrix special case (Serge Steer 96)
         do 21 j=1,n
            call dset(n,0.0d+0,ea(j,1),iea)
            ea(j,j)=1.0d0
 21      continue
         return
      endif
      anorm=max(anorm,1.0d0)
c
c call bdiag whith rmax equal to the norm one of matrix a.
c
      call bdiag(ia,n,a,0.0d+0,anorm,w(ker),w(kei),
     * iw(kbs),w(kx),w(kxi),w(kscal),1,fail)
      if (fail) go to 120
      do 25 j=1,n
      call dset(n,0.0d+0,ea(j,1),iea)
   25 continue
c
c  compute the pade's approximants of the block.
c block origin is shifted before calling pade.
c
      ni = 1
      k = 0
c
c  loop on the block.
c
   30 k = k + ni
      if (k.gt.n) go to 100
      ni = iw(kbs-1+k)
      if (ni.eq.1) go to 90
      nii = k + ni - 1
      bvec = zero
      do 40 i=k,nii
         bvec = bvec + w(ker-1+i)
   40 continue
      bvec = bvec/dble(real(ni))
      do 50 i=k,nii
         w(ker-1+i) = w(ker-1+i) - bvec
         a(i,i) = a(i,i) - bvec
   50 continue
      alpha = zero
      do 60 i=k,nii
         rn = w(ker-1+i)**2 + w(kei-1+i)**2
         rn = sqrt(rn)
         if (rn.gt.alpha) alpha = rn
   60 continue
c
c call pade subroutine.
c
      call pade(a(k,k),ia,ni,ea(k,k),iea,alpha,w(kw),iw(kiw),
     1   ierr)
      if (ierr.lt.0) go to 130
c
c remove the effect of origin shift on the block.
c
      bbvec = exp(bvec)
      do 80 i=k,nii
         do 70 j=k,nii
            ea(i,j) = ea(i,j)*bbvec
   70    continue
   80 continue
      go to 30
   90 ea(k,k) = exp(a(k,k))
      go to 30
c
c end of loop.
c
  100 continue
c
c remove the effect of block diagonalization.
c
      call dmmul(w(kx),ia,ea,iea,w(kw),n,n,n,n)
      call dmmul(w(kw),n,w(kxi),ia,ea,iea,n,n,n)
c
c remove the effects of balance
c
c
c error output
c
      go to 130
  110 ierr = -1
      go to 130
  120 ierr = -2
  130 continue
      return
      end
 |