| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 
 |       subroutine dpofa(a,lda,n,info)
      integer lda,n,info
      double precision a(lda,*)
c!purpose
c
c     dpofa factors a double precision symmetric positive definite
c     matrix.
c
c     dpofa is usually called by dpoco, but it can be called
c     directly with a saving in time if  rcond  is not needed.
c     (time for dpoco) = (1 + 18/n)*(time for dpofa) .
c
c!calling sequence
c
c      subroutine dpofa(a,lda,n,info)
c     on entry
c
c        a       double precision(lda, n)
c                the symmetric matrix to be factored.  only the
c                diagonal and upper triangle are used.
c
c        lda     integer
c                the leading dimension of the array  a .
c
c        n       integer
c                the order of the matrix  a .
c
c     on return
c
c        a       an upper triangular matrix  r  so that  a = trans(r)*r
c                where  trans(r)  is the transpose.
c                the strict lower triangle is unaltered.
c                if  info .ne. 0 , the factorization is not complete.
c
c        info    integer
c                = 0  for normal return.
c                = k  signals an error condition.  the leading minor
c                     of order  k  is not positive definite.
c
c!originator
c     linpack.  this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c!auxiliary routines
c
c     blas ddot
c     fortran sqrt
c
c!
c     internal variables
c
      double precision ddot,t
      double precision s
      integer j,jm1,k
c     begin block with ...exits to 40
c
c
         do 30 j = 1, n
            info = j
            s = 0.0d+0
            jm1 = j - 1
            if (jm1 .lt. 1) go to 20
            do 10 k = 1, jm1
               t = a(k,j) - ddot(k-1,a(1,k),1,a(1,j),1)
               t = t/a(k,k)
               a(k,j) = t
               s = s + t*t
   10       continue
   20       continue
            s = a(j,j) - s
c     ......exit
            if (s .le. 0.0d+0) go to 40
            a(j,j) = sqrt(s)
   30    continue
         info = 0
   40 continue
      return
      end
 |