1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
  
     | 
    
            subroutine lybsc(n,a,na,c,x,u,eps,wrk,mode,ierr)
      integer n,na,mode,ierr
      double precision a(na,n),c(na,n),x(na,n),u(na,n),wrk(n)
      double precision eps
C
C! calling sequence
C        subroutine lybsc(n,a,na,c,x,u,wrk,mode,ierr)
C
C        integer n,na,mode,ierr
C        double precision a(na,n),c(na,n),x(na,n),u(na,n),wrk(n)
C
C arguments in
C
C
C       n        integer
C                -the dimension of a
C
C       a        double precision(n,n)
C                -coefficient matrix of the equation
C                *** n.b. in this routine  a  is overwritten with
C                its transformed upper triangular form (see comments)
C
C       c        double precision(n,n)
C                -coefficient matrix of the equation
C
C       na       integer
C                -the declared first dimension of a,c,x and u
C
C       mode     integer
C                - mode = 0  if  a  has not already been reduced to
C                                upper triangular form
C                - mode = 1  if  a  has been reduced to triangular form
C                                by (e.g) a previous call to lybsc
C
C arguments out
C
C       a        double precision(n,n)
C                -on exit, a  contains the transformed upper triangular
C                form of a
C
C       x        double precision(n,n)
C                -the solution matrix
C
C       u        double precision(n,n)
C                - u  contains the orthogonal matrix which was used
C                to reduce  a  to upper triangular form
C
C       ierr     integer
C                -error indicator
C
C                ierr = 0     successful return
C
C                ierr = 1     a  has a degenerate pair of eigenvalues
C
C                ierr = 2     a  cannot be reduced to triangular form
C
C working space
C
C        wrk     double precision(n)
C
C!purpose
C
C        to solve the double precision matrix equation
C
C               trans(a)*x + x*a = c
C
C        where  c  is symmetric, and  trans(a)  denotes
C        the transpose of  a .
C
C!method
C
C        this routine is a modification of the subroutine  atxxac,
C        written and discussed by  r.h.bartels & g.w.stewart.
C
C!reference
C
C         r.h. bartels & g.w. stewart
C            "solution of the matrix equation  a'x + xb = c  ",
C            commun. a.c.m., vol 15, 1972, pp. 820-826 .
C
C!auxiliary routines
C
C       orthes,ortran (eispack)
C       sgefa,sgesl   (linpack)
C       lycsr  (slice)
C
C!origin: adapted from
C
C                control systems research group, dept eecs, kingston
C                polytechnic, penrhyn rd.,kingston-upon-thames, england.
C
C!
C******************************************************************
C       local variables:
C
      integer i,j,k
      double precision dprec,tt(1)
C
      if (mode .eq. 1) goto 10
      call orthes(na,n,1,n,a,wrk)
      call ortran(na,n,1,n,a,wrk,u)
      call hqror2(na,n,1,n,a,tt,tt,u,ierr,11)
      if (ierr .ne. 0) goto 140
 10   continue
      do 20 i = 1,n
        do 15 j = 1,n
          x(i,j) = c(i,j)
 15     continue
        x(i,i) = x(i,i) * 0.50d+0
 20   continue
C
      do 40 i = 1,n
        do 30 j = 1,n
          dprec = 0.0d+0
          do 25 k = i,n
            dprec = dprec + x(i,k)*u(k,j)
 25       continue
          wrk(j) = dprec
 30     continue
        do 40 j = 1,n
          x(i,j) = wrk(j)
 40   continue
      do 60 j = 1,n
        do 50 i = 1,n
          dprec = 0.0d+0
          do 45 k = 1,n
            dprec = dprec + u(k,i)*x(k,j)
 45       continue
          wrk(i) = dprec
 50     continue
        do 60 i = 1,n
          x(i,j) = wrk(i)
 60   continue
C
      do 70 i = 1,n
        do 70 j = i,n
          x(i,j) = x(i,j) + x(j,i)
          x(j,i) = x(i,j)
 70   continue
C
C     call shrslv (c,a,x,n,n,na,na,na,0.0d+0,1.0d+20,fail)
      call lycsr(n,a,na,x,ierr)
      if (ierr .ne. 0) return
C
      do 80 i = 1,n
        x(i,i) = x(i,i) * 0.50d+0
 80   continue
C
      do 100 i = 1,n
        do 90 j = 1,n
          dprec = 0.0d+0
          do 85 k = i,n
            dprec = dprec + x(i,k)*u(j,k)
 85       continue
          wrk(j) = dprec
 90     continue
        do 100 j = 1,n
          x(i,j) = wrk(j)
 100  continue
C
      do 120 j = 1,n
        do 110 i = 1,n
          dprec = 0.0d+0
          do 105 k = 1,n
            dprec = dprec + u(i,k)*x(k,j)
 105      continue
          wrk(i) = dprec
 110    continue
        do 120 i = 1,n
          x(i,j) = wrk(i)
 120  continue
C
      do 130 i = 1,n
        do 130 j = i,n
          x(i,j) = x(i,j) + x(j,i)
          x(j,i) = x(i,j)
 130  continue
C
      goto 150
 140  ierr = 2
 150  return
      end
      subroutine lycsr(n,a,na,c,ierr)
c%calling sequence
c      subroutine lycsr(n,a,na,c,ierr)
c     integer n,na,ierr
c     double precision a(na,n),c(na,n)
c%purpose
c
c
c     this routine solves the continuous lyapunov equation where
c     the matrix  a  has been transformed to quasi-triangular form.
c
c     this routine is intended to be called only from
c            slice   routine  lybsc .
c%
      integer i,j,k,l,n,dk,dl,ia,kk,ll,na,job,km1,ldl,ierr,info,
     x        ldim,nsys,ipvt(4)
      double precision a(na,n),c(na,n)
      double precision t(4,4),p(4)
      double precision dprec
      ierr = 0
      ldim = 4
      job = 0
      l = 1
   10    dl = 1
         if (l .eq. n) go to 20
         if (a(l+1,l) .ne. 0.0d+0) dl = 2
   20    ll = l + dl - 1
         k = l
   30       km1 = k - 1
            dk = 1
            if (k .eq. n) go to 34
            if (a(k+1,k) .ne. 0.0d+0) dk = 2
   34       kk = k + dk - 1
            if (k .eq. l) go to 45
c
            do 40 i = k, kk
c
               do 40 j = l, ll
                dprec = 0.0d+0
                  do 35 ia = l, km1
                     dprec = dprec + a(ia,i) * c(ia,j)
   35             continue
                c(i,j) = c(i,j) - dprec
   40       continue
c
   45       if (dl .eq. 2) go to 60
            if (dk .eq. 2) go to 50
            t(1,1) = a(k,k) + a(l,l)
            if (t(1,1) .eq. 0.0d+0) go to 130
            c(k,l) = c(k,l) / t(1,1)
            go to 90
   50       t(1,1) = a(k,k) + a(l,l)
            t(1,2) = a(kk,k)
            t(2,1) = a(k,kk)
            t(2,2) = a(kk,kk) + a(l,l)
            p(1) = c(k,l)
            p(2) = c(kk,l)
            nsys = 2
            call dgefa(t,ldim,nsys,ipvt,info)
            if (info .ne. 0) go to 130
            call dgesl(t,ldim,nsys,ipvt,p,job)
            c(k,l) = p(1)
            c(kk,l) = p(2)
            go to 90
   60       if (dk .eq. 2) go to 70
            t(1,1) = a(k,k) + a(l,l)
            t(1,2) = a(ll,l)
            t(2,1) = a(l,ll)
            t(2,2) = a(k,k) + a(ll,ll)
            p(1) = c(k,l)
            p(2) = c(k,ll)
            nsys = 2
            call dgefa(t,ldim,nsys,ipvt,info)
            if (info .ne. 0) go to 130
            call dgesl(t,ldim,nsys,ipvt,p,job)
            c(k,l) = p(1)
            c(k,ll) = p(2)
            go to 90
   70       if (k .ne. l) go to 80
            t(1,1) = a(l,l)
            t(1,2) = a(ll,l)
            t(1,3) = 0.0d+0
            t(2,1) = a(l,ll)
            t(2,2) = a(l,l) + a(ll,ll)
            t(2,3) = t(1,2)
            t(3,1) = 0.0d+0
            t(3,2) = t(2,1)
            t(3,3) = a(ll,ll)
            p(1) = c(l,l) * 0.50d+0
            p(2) = c(ll,l)
            p(3) = c(ll,ll) * 0.50d+0
            nsys = 3
            call dgefa(t,ldim,nsys,ipvt,info)
            if (info .ne. 0) go to 130
            call dgesl(t,ldim,nsys,ipvt,p,job)
            c(l,l) = p(1)
            c(ll,l) = p(2)
            c(l,ll) = p(2)
            c(ll,ll) = p(3)
            go to 90
   80       t(1,1) = a(k,k) + a(l,l)
            t(1,2) = a(kk,k)
            t(1,3) = a(ll,l)
            t(1,4) = 0.0d+0
            t(2,1) = a(k,kk)
            t(2,2) = a(kk,kk) + a(l,l)
            t(2,3) = 0.0d+0
            t(2,4) = t(1,3)
            t(3,1) = a(l,ll)
            t(3,2) = 0.0d+0
            t(3,3) = a(k,k) + a(ll,ll)
            t(3,4) = t(1,2)
            t(4,1) = 0.0d+0
            t(4,2) = t(3,1)
            t(4,3) = t(2,1)
            t(4,4) = a(kk,kk) + a(ll,ll)
            p(1) = c(k,l)
            p(2) = c(kk,l)
            p(3) = c(k,ll)
            p(4) = c(kk,ll)
            nsys = 4
            call dgefa(t,ldim,nsys,ipvt,info)
            if (info .ne. 0) go to 130
            call dgesl(t,ldim,nsys,ipvt,p,job)
            c(k,l) = p(1)
            c(kk,l) = p(2)
            c(k,ll) = p(3)
            c(kk,ll) = p(4)
   90    k = k + dk
         if (k .le. n) go to 30
         ldl = l + dl
         if (ldl .gt. n) return
c
         do 120 j = ldl, n
c
            do 100 i = l, ll
               c(i,j) = c(j,i)
  100       continue
c
            do 120 i = j, n
                dprec = 0.0d+0
               do 110 k = l, ll
                dprec = dprec + c(i,k) * a(k,j)
                dprec = dprec + a(k,i) * c(k,j)
  110          continue
                c(i,j) = c(i,j) - dprec
               c(j,i) = c(i,j)
  120    continue
c
      l = ldl
      go to 10
c
  130 ierr = 1
      return
      end
 
     |