| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 
 |       subroutine qhesz(nm,n,a,b,matq,q,matz,z)
c
      integer i,j,k,l,n,lb,l1,nm,nk1,nm1,nm2
      double precision a(nm,n),b(nm,n),z(nm,n),q(nm,n)
      double precision r,s,t,u1,u2,v1,v2,rho
      logical matz,matq
c
c! purpose
c     this subroutine accepts a pair of real general matrices and
c     reduces one of them to upper hessenberg form and the other
c     to upper triangular form using orthogonal transformations.
c     it is usually followed by  qzit,  qzval  and, possibly,  qzvec.
c
c! calling sequence
c
c     subroutine qhesz(nm,n,a,b,matq,q,matz,z)
c
c     on input:
c
c        nm must be set to the row dimension of two-dimensional
c          array parameters as declared in the calling program
c          dimension statement;
c
c        n is the order of the matrices;
c
c        a contains a real general matrix;
c
c        b contains a real general matrix;
c
c        matz should be set to .true. if the right hand transformations
c          are to be accumulated for later use in computing
c          eigenvectors, and to .false. otherwise.
c
c     on output:
c
c        a has been reduced to upper hessenberg form.  the elements
c          below the first subdiagonal have been set to zero;
c
c        b has been reduced to upper triangular form.  the elements
c          below the main diagonal have been set to zero;
c
c        z contains the product of the right hand transformations if
c          matz has been set to .true.  otherwise, z is not referenced.
c
c! originator
c
c     this subroutine is the first step of the qz algorithm
c     for solving generalized matrix eigenvalue problems,
c     siam j. numer. anal. 10, 241-256(1973) by moler and stewart.
c     (modification de la routine qzhes de eispack pour avoir
c     la matrice unitaire de changement de base sur les lignes
c     donne par la matrice q .memes conventions que pour z.)
c     f.d.
c!
c     questions and comments should be directed to b. s. garbow,
c     applied mathematics division, argonne national laboratory
c
c     ------------------------------------------------------------------
c
c     :::::::::: initialize z ::::::::::
      if (.not. matz) go to 10
c
      do 3 i = 1, n
c
         do 2 j = 1, n
            z(i,j) = 0.0d+0
    2    continue
c
         z(i,i) = 1.0d+0
    3 continue
   10 continue
      if(.not.matq) goto 11
      do 31 i=1,n
      do 21 j=1,n
      q(i,j)=0.0d+0
  21  continue
      q(i,i)=1.0d+0
  31  continue
  11  continue
c     :::::::::: reduce b to upper triangular form ::::::::::
      if (n .le. 1) go to 170
      nm1 = n - 1
c
      do 100 l = 1, nm1
         l1 = l + 1
         s = 0.0d+0
c
         do 20 i = l1, n
            s = s + abs(b(i,l))
   20    continue
c
         if (s .eq. 0.0d+0) go to 100
         s = s + abs(b(l,l))
         r = 0.0d+0
c
         do 25 i = l, n
            b(i,l) = b(i,l) / s
            r = r + b(i,l)**2
   25    continue
c
         r = sign(sqrt(r),b(l,l))
         b(l,l) = b(l,l) + r
         rho = r * b(l,l)
c
         do 50 j = l1, n
            t = 0.0d+0
c
            do 30 i = l, n
               t = t + b(i,l) * b(i,j)
   30       continue
c
            t = -t / rho
c
            do 40 i = l, n
               b(i,j) = b(i,j) + t * b(i,l)
   40       continue
c
   50    continue
c
         do 80 j = 1, n
            t = 0.0d+0
c
            do 60 i = l, n
               t = t + b(i,l) * a(i,j)
   60       continue
c
            t = -t / rho
c
            do 70 i = l, n
               a(i,j) = a(i,j) + t * b(i,l)
   70       continue
c
   80    continue
      if(.not.matq) goto 99
         do 780 j = 1, n
            t = 0.0d+0
c
            do 760 i = l, n
               t = t + b(i,l) * q(i,j)
  760     continue
c
            t = -t / rho
c
            do 770 i = l, n
          q(i,j)=q(i,j)+t*b(i,l)
  770  continue
c
  780    continue
  99  continue
c
         b(l,l) = -s * r
c
         do 90 i = l1, n
            b(i,l) = 0.0d+0
   90    continue
c
  100 continue
c     :::::::::: reduce a to upper hessenberg form, while
c                keeping b triangular ::::::::::
      if (n .eq. 2) go to 170
      nm2 = n - 2
c
      do 160 k = 1, nm2
         nk1 = nm1 - k
c     :::::::::: for l=n-1 step -1 until k+1 do -- ::::::::::
         do 150 lb = 1, nk1
            l = n - lb
            l1 = l + 1
c     :::::::::: zero a(l+1,k) ::::::::::
            s = abs(a(l,k)) + abs(a(l1,k))
            if (s .eq. 0.0d+0) go to 150
            u1 = a(l,k) / s
            u2 = a(l1,k) / s
            r = sign(sqrt(u1*u1+u2*u2),u1)
            v1 =  -(u1 + r) / r
            v2 = -u2 / r
            u2 = v2 / v1
c
            do 110 j = k, n
               t = a(l,j) + u2 * a(l1,j)
               a(l,j) = a(l,j) + t * v1
               a(l1,j) = a(l1,j) + t * v2
  110       continue
c
            a(l1,k) = 0.0d+0
c
            do 120 j = l, n
               t = b(l,j) + u2 * b(l1,j)
               b(l,j) = b(l,j) + t * v1
               b(l1,j) = b(l1,j) + t * v2
  120       continue
      if(.not.matq) goto 122
      do 121 j=1,n
      t=q(l,j)+u2*q(l1,j)
      q(l,j)=q(l,j)+t*v1
      q(l1,j)=q(l1,j)+t*v2
  121 continue
  122 continue
c     :::::::::: zero b(l+1,l) ::::::::::
            s = abs(b(l1,l1)) + abs(b(l1,l))
            if (s .eq. 0.0d+0) go to 150
            u1 = b(l1,l1) / s
            u2 = b(l1,l) / s
            r = sign(sqrt(u1*u1+u2*u2),u1)
            v1 =  -(u1 + r) / r
            v2 = -u2 / r
            u2 = v2 / v1
c
            do 130 i = 1, l1
               t = b(i,l1) + u2 * b(i,l)
               b(i,l1) = b(i,l1) + t * v1
               b(i,l) = b(i,l) + t * v2
  130       continue
c
            b(l1,l) = 0.0d+0
c
            do 140 i = 1, n
               t = a(i,l1) + u2 * a(i,l)
               a(i,l1) = a(i,l1) + t * v1
               a(i,l) = a(i,l) + t * v2
  140       continue
c
            if (.not. matz) go to 150
c
            do 145 i = 1, n
               t = z(i,l1) + u2 * z(i,l)
               z(i,l1) = z(i,l1) + t * v1
               z(i,l) = z(i,l) + t * v2
  145       continue
c
  150    continue
c
  160 continue
c
  170 return
c     :::::::::: last card of qzhes ::::::::::
      end
 |