1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/*------------------------------------------------------------------------
* Graphic library for 2D and 3D plotting
* Copyright (C) 1998 Chancelier Jean-Philippe
* jpc@cergrene.enpc.fr
* --------------------------------------------------------------------------*/
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "Math.h"
static void triang();
static int zcote();
/*------------------------------------------------------------
* Iso contour with grey level or colors
* for a function defined by finite elements
* ( f is linear on triangles )
* we give two versions of the function : a
* quick version wich only fill triangles according to the average
* value of f on a triangle
* and a slow version but more sexy which use the fact that f is linear
* on each triangle.
* Nodes (x[no],y[no])
* Triangles (Matrix: [ numero, no1,no2,no3,iflag;...]
* func[no] : Function value on Nodes.
* Nnode : number of nodes
* Ntr : number of triangles
* strflag,legend,brect,aint : see plot2d
---------------------------------------------------------------*/
int C2F(fec)(x,y,triangles,func,Nnode,Ntr,strflag,legend,brect,aaint,lstr1,lstr2)
double x[],y[],triangles[],func[];
integer *Nnode,*Ntr;
double brect[];
integer aaint[];
char legend[],strflag[];
integer lstr1,lstr2;
{
static char logflag[]="nn";
double FRect[4],scx,scy,xofset,yofset;
integer IRect[4],i;
integer Xdec[3],Ydec[3];
integer err=0,*xm,*ym,job=1,n1=1,j,k;
/* Storing values if using the Record driver */
if (GetDriver()=='R')
StoreFec("fec",x,y,triangles,func,Nnode,Ntr,strflag,legend,brect,aaint);
/** Boundaries of the frame **/
FrameBounds("gnn",x,y,&n1,Nnode,aaint,strflag,brect,FRect,Xdec,Ydec);
if ( (int)strlen(strflag) >=2 && strflag[1]=='0') job=0;
Scale2D(job,FRect,IRect,aaint,&scx,&scy,&xofset,&yofset,logflag,&xm,&ym,*Nnode,&err);
if ( err == 0) return(0);
C2F(echelle2d)(x,y,xm,ym,Nnode,&n1,IRect,"f2i",3L);
/** Draw Axis or only rectangle **/
if ((int)strlen(strflag) >= 3 && strflag[2] == '1')
{
if ( strflag[1] == '5' || strflag[1]=='6' )
{
/* utilisation des bornes automatiques */
C2F(aplot1)(FRect,IRect,Xdec,Ydec,&(aaint[0]),&(aaint[2]),"nn",scx,scy,xofset,yofset);
}
else
{
double xmin1,xmax1, ymin1,ymax1;
C2F(aplot)(IRect,(xmin1=FRect[0],&xmin1),(ymin1=FRect[1],&ymin1),
(xmax1=FRect[2],&xmax1),(ymax1=FRect[3],&ymax1),
&(aaint[0]),&(aaint[2]),"nn");
}
}
else
{
if ((int)strlen(strflag) >= 3 && strflag[2] == '2')
C2F(dr)("xrect","v",&IRect[0],&IRect[1],&IRect[2],&IRect[3],
PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
}
/* Fec code */
C2F(dr)("xset","clipping",&IRect[0],&IRect[1],&IRect[2],&IRect[3]
,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
{
integer nz;
integer verbose=0,whiteid,narg;
double zmin,zmax;
/** Filling the triangles **/
zmin=(double) Mini(func,*Nnode);
zmax=(double) Maxi(func,*Nnode);
C2F(dr)("xget","lastpattern",&verbose,&whiteid,&narg,
PI0,PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
nz=whiteid;
for ( i =0 ; i < nz ; i++)
{
int fill = -( i+1 );
double vmin,vmax;
vmin=zmin + i*(zmax-zmin)/(nz);
vmax=zmin + (i+1)*(zmax-zmin)/(nz);
for ( j = 0 ; j < *Ntr ; j++)
{
integer sx[3],sy[3];
integer resx[6],resy[6];
double fxy[3];
integer ncont,nr;
for ( k=0 ; k< 3 ; k++)
{
integer ii=(integer) triangles[j+(*Ntr)*(k+1)];
sx[k]= xm[ii-1];
sy[k]= ym[ii-1];
fxy[k]= func[ii-1];
}
triang(sx,sy,fxy,&vmin,&vmax,resx,resy,&nr);
if ( nr != 0)
C2F(dr)("xliness","str",resx,resy,&fill,
(ncont=1,&ncont),&nr, PI0,PD0,PD0,PD0,PD0,0L,0L);
}
}
}
C2F(dr)("xset","clipoff",PI0,PI0,PI0,PI0, PI0,PI0,PD0,PD0,PD0,PD0,0L,0L);
/** Drawing the Legends **/
if ((int)strlen(strflag) >=1 && strflag[0] == '1')
{
integer style = -1;
n1=1;
Legends(IRect,&style,&n1,legend);
}
return(0);
}
static void triang(sx, sy, fxy, zmin, zmax, resx, resy, nx)
integer *sx;
integer *sy;
double *fxy;
double *zmin;
double *zmax;
integer *resx;
integer *resy;
integer *nx;
{
integer cot;
/* Cherche le polygone inclus ds le triangle
defini par sx,sy
pour lequel la valeur de f est comprise entre zmin
et zmax f est lineaire sur le triangle
*/
*nx = -1;
for (cot=0;cot<3;cot++)
{
integer cotn = (cot+1)%3;
double alpha1,alpha2;
if (zcote(cot, cotn,fxy,zmin,zmax,&alpha1,&alpha2) != 0)
{
(*nx)++;
resx[*nx]=inint(alpha1*sx[cotn]+(1.0-alpha1)*sx[cot]);
resy[*nx]=inint(alpha1*sy[cotn]+(1.0-alpha1)*sy[cot]);
(*nx)++;
resx[*nx]=inint(alpha2*sx[cotn]+(1.0-alpha2)*sx[cot]);
resy[*nx]=inint(alpha2*sy[cotn]+(1.0-alpha2)*sy[cot]);
}
}
(*nx)++;
}
static int zcote(i, j, fxy, zmin, zmax, alpha1, alpha2)
integer i;
integer j;
double *fxy;
double *zmin;
double *zmax;
double *alpha1;
double *alpha2;
{
if ( fxy[i] >= *zmin && fxy[i] <= *zmax )
{
*alpha1=0.0;
if ( fxy[j] >= fxy[i])
{
if ( fxy[j] > fxy[i])
*alpha2=Min((*zmax-fxy[i])/(fxy[j]-fxy[i]),1.0);
else
*alpha2=1.0;
}
else
{
*alpha2=Min((*zmin-fxy[i])/(fxy[j]-fxy[i]),1.0);
}
}
else
{
if ( fxy[i] < *zmin )
{
if ( fxy[j] < *zmin)
return(0);
else
{
*alpha1=Min((*zmin-fxy[i])/(fxy[j]-fxy[i]),1.0);
if (fxy[j] <= *zmax)
*alpha2=1;
else
*alpha2=Min((*zmax-fxy[i])/(fxy[j]-fxy[i]),1.0);
}
}
else
if ( fxy[i] > *zmax )
{
if ( fxy[j] > *zmax) return(0);
else
{
*alpha1=Min((*zmax-fxy[i])/(fxy[j]-fxy[i]),1.0);
if (fxy[j] > *zmin)
*alpha2=1;
else
*alpha2=Min((*zmin-fxy[i])/(fxy[j]-fxy[i]),1.0);
}
}
}
return(1);
}
|