1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
subroutine dqags(f, a, b, epsabs, epsrel, alist, blist,elist,
* rlist, limit, iord, liord, result, abserr, ier)
c
c based on quadpack routine dqags (formerly qags)
c **********************************************************
c
c purpose
c the routine calculates an approximation
c /result/ to a given definite integral i =
c integral of /f/ over (a,b), hopefully
c satisfying following claim for accuracy .
c abs(i-result) .le. max(epsabs,epsrel*abs(i)).
c
c calling sequence
c call dqags (f,a,b,epsabs,epsrel,alist,blist,elist,
c rlist,limit,iord,liord,result,abserr,ier)
c
c parameters
c f - function subprogram defining the integrand
c function f(x). the actual name for f
c needs to be declared e x t e r n a l
c in the driver program
c
c a - lower limit of integration
c
c b - upper limit of integration
c
c epsabs - absolute accuracy requested
c
c epsrel - relative accuracy requested
c
c alist,blist,elist,rlist
c - work arrays (functions described below)
c
c limit - upper bound for number of subintervals
c
c iord - work array
c
c liord - length of iord (at least limit/2 + 2)
c
c result - approximation to the integral
c
c abserr - estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c ier - ier = 0 normal and reliable
c termination of the routine.
c it is assumed that the
c requested accuracy has been
c achieved.
c - ier .ne. 0 abnormal termination of
c the routine. the estimates
c for integral and error are
c less reliable. it is assumed
c that the requested accuracy
c has not been achieved.
c = 1 maximum number of subdivisions allowed
c has been achieved. the user can
c allow more sub divisions by
c increasing the dimensions of the
c work arrays work and iwork.
c however, this may
c yield no improvement, and it
c is rather advised to have a
c close look at the integrand,
c in order to determine the
c integration difficulties. if
c the position of a local
c difficulty can be determined
c (i.e. singularity,
c discontinuity within the
c interval) one will probably
c gain from splitting up the
c interval at this point and
c calling the integrator on the
c sub-ranges. if possible, an
c appropriate special-purpose
c integrator should be used
c which is designed for
c handling the type of
c difficulty involved.
c = 2 the occurrence of roundoff
c error is detected which
c prevents the requested
c tolerance from being
c achieved. the error may be
c under-estimated.
c = 3 extremely bad integrand behaviour
c occurs at some interior points of the
c integration interval.
c = 4 it is presumed that the requested
c tolerance cannot be achieved,
c and that the returned result
c is the best which can be
c obtained.
c = 5 the integral is probably divergent, or
c slowly convergent. it must be noted
c that divergency can occur
c with any other value of ier.
c = -1 an error occurs during the evaluation of f
c **********************************************************
c .. scalar arguments ..
double precision a, abserr, b, epsabs, epsrel, result
integer ier, limit, liord
c .. array arguments ..
double precision alist(limit), blist(limit), elist(limit),
* rlist(limit)
integer iord(liord)
c .. function arguments ..
double precision f
c ..
c .. scalars in common ..
integer jupbnd
integer iero
common/ierajf/iero
c ..
c .. local scalars ..
double precision a1, a2, abseps, area12, area1, area2, area, b1,
* b2,correc, defab1, defab2, defabs, dres, epmach, erlarg,erlast,
* errbnd, errmax, erro12, error1, error2, errsum,ertest, oflow,
* resabs, reseps, small, uflow
integer id, ierro, iroff1, iroff2, iroff3, k, ksgn, ktmin,last1,
* last, maxerr, nres, nrmax, numrl2
logical extrap, noext
c .. local arrays ..
double precision res3la(3), rlist2(52)
c .. function references ..
double precision dlamch
c .. subroutine references ..
c order, epsalg, quarul
c ..
external f
common /dqa001/ jupbnd
c
c the dimension of /rlist2/ is determined by
c data /limexp/ in subroutine epsalg (/rlist2/
c should be of dimension (limexp+2) at least).
c
epmach=dlamch('p')
uflow=dlamch('u')
oflow=dlamch('o')
iero=0
c
c list of major variables
c -----------------------
c
c alist - list of left end-points of all subintervals
c considered up to now
c
c blist - list of right end-points of all subintervals
c considered up to now
c
c rlist(i) - approximation to the integral over
c (alist(i),blist(i))
c
c rlist2 - array of dimension at least limexp+2
c containing the part of the epsilon table
c which is still needed for further
c computations
c
c elist(i) - error estimate applying to rlist(i)
c
c maxerr - pointer to the interval with largest error
c estimate
c
c errmax - elist(maxerr)
c
c erlast - error on the interval currently subdivided
c (before that subdivision has taken place)
c
c area - sum of the integrals over the subintervals
c
c errsum - sum of the errors over the subintervals
c
c errbnd - requested accuracy max(epsabs,epsrel*
c abs(result))
c
c *****1 - variable for the left interval
c
c *****2 - variable for the right interval
c
c last - index for subdivision
c
c nres - number of calls to the extrapolation routine
c
c numrl2 - number of elements currently in
c rlist2. if an appropriate
c approximation to the compounded
c integral has been obtained it is
c put in rlist2(numrl2) after numrl2
c has been increased by one.
c
c small - length of the smallest interval considered
c up to now, multiplied by 1.5
c
c erlarg - sum of the errors over the intervals larger
c than the smallest interval
c considered up to now
c extrap - logical variable denoting that the
c routine is attempting to perform
c extrapolation. i.e. before
c subdividing the smallest interval
c we try to decrease the value of
c erlarg
c noext - logical variable denoting that extrapolation
c is no longer allowed(/true/ value)
c
c first approximation to the integral
c -----------------------------------
c
last1 = 1
ier = 0
ierro = 0
call quarul(f, a, b, result, abserr, defabs, resabs)
if(iero.gt.0) then
ier=6
return
endif
c
c test on accuracy
c
dres = abs(result)
errbnd = max(epsabs,epsrel*dres)
if (abserr.le.1.0d+02*epmach*defabs .and. abserr.gt.errbnd)ier = 2
if (limit.lt.2 .and. abserr.gt.errbnd) ier = 1
if (ier.ne.0 .or. abserr.le.errbnd) go to 320
c
c initialization
c --------------
c
alist(1) = a
blist(1) = b
rlist(1) = result
rlist2(1) = result
errmax = abserr
maxerr = 1
area = result
errsum = abserr
abserr = oflow
nrmax = 1
nres = 0
numrl2 = 2
ktmin = 0
extrap = .false.
noext = .false.
iroff1 = 0
iroff2 = 0
iroff3 = 0
ksgn = -1
if (dres.ge.(0.10d+01-0.50d+02*epmach)*defabs) ksgn = 1
c
c main do-loop
c ------------
c
if (limit.lt.2) go to 220
do 200 last=2,limit
c
c bisect the subinterval with the nrmax-th largest
c error estimate
c
last1 = last
a1 = alist(maxerr)
b1 = 0.50d+00*(alist(maxerr)+blist(maxerr))
a2 = b1
b2 = blist(maxerr)
erlast = errmax
call quarul(f, a1, b1, area1, error1, resabs, defab1)
if(iero.gt.0) then
ier=6
return
endif
call quarul(f, a2, b2, area2, error2, resabs, defab2)
if(iero.gt.0) then
ier=6
return
endif
c
c improve previous approximation of integral
c and error and test for accuracy
c
area12 = area1 + area2
erro12 = error1 + error2
errsum = errsum + erro12 - errmax
area = area + area12 - rlist(maxerr)
if (defab1.eq.error1 .or. defab2.eq.error2) go to 40
if (abs(rlist(maxerr)-area12).gt.0.10d-04*abs(area12) .or.
* erro12.lt.0.990d+00*errmax) go to 20
if (extrap) iroff2 = iroff2 + 1
if (.not.extrap) iroff1 = iroff1 + 1
20 if (last.gt.10 .and. erro12.gt.errmax) iroff3 = iroff3 + 1
40 rlist(maxerr) = area1
rlist(last) = area2
errbnd = max(epsabs,epsrel*abs(area))
if (errsum.le.errbnd) go to 280
c
c test for roundoff error and eventually
c set error flag
c
if (iroff1+iroff2.ge.10 .or. iroff3.ge.20) ier = 2
if (iroff2.ge.5) ierro = 3
c
c set error flag in the case that the number of interval
c bisections exceeds /limit/
c
if (last.eq.limit) ier = 1
c
c set error flag in the case of bad integrand behaviour
c at interior points of integration range
c
if (max(abs(a1),abs(b2)).le.(0.10d+01+0.10d+03*epmach)*
* (abs(a2)+0.10d+04*uflow)) ier = 4
if (ier.ne.0) go to 220
c
c append the newly-created intervals to the list
c
if (error2.gt.error1) go to 60
alist(last) = a2
blist(maxerr) = b1
blist(last) = b2
elist(maxerr) = error1
elist(last) = error2
go to 80
60 alist(maxerr) = a2
alist(last) = a1
blist(last) = b1
rlist(maxerr) = area2
rlist(last) = area1
elist(maxerr) = error2
elist(last) = error1
c
c call subroutine order to maintain the
c descending ordering in the list of error
c estimates and select the subinterval with
c nrmax-th largest error estimate (to be bisected
c next)
c
80 call order(limit, last, maxerr, errmax, elist, iord,liord,
* nrmax)
if (last.eq.2) go to 180
if (noext) go to 200
erlarg = erlarg - erlast
if (abs(b1-a1).gt.small) erlarg = erlarg + erro12
if (extrap) go to 100
c
c test whether the interval to be bisected next is the
c smallest interval
c
if (abs(blist(maxerr)-alist(maxerr)).gt.small) go to 200
extrap = .true.
nrmax = 2
100 if (ierro.eq.3 .or. erlarg.le.ertest) go to 140
c
c the smallest interval has the largest error.
c before bisecting decrease the sum of the errors
c over the larger intervals(erlarg) and perform
c extrapolation
c
id = nrmax
do 120 k=id,jupbnd
maxerr = iord(nrmax)
errmax = elist(maxerr)
if (abs(blist(maxerr)-alist(maxerr)).gt.small) go to 200
nrmax = nrmax + 1
120 continue
c
c perform extrapolation
c
140 numrl2 = numrl2 + 1
rlist2(numrl2) = area
call epsalg(numrl2, rlist2, reseps, abseps, res3la, nres)
ktmin = ktmin + 1
if (ktmin.gt.5 .and. abserr.lt.0.10d-02*errsum) ier = 5
if (abseps.ge.abserr) go to 160
ktmin = 0
abserr = abseps
result = reseps
correc = erlarg
ertest = max(epsabs,epsrel*abs(reseps))
if (abserr.le.ertest) go to 220
c
c prepare bisection of the smallest interval
c
160 if (numrl2.eq.1) noext = .true.
if (ier.eq.5) go to 220
maxerr = iord(1)
errmax = elist(maxerr)
nrmax = 1
extrap = .false.
small = small*0.50d+00
erlarg = errsum
go to 200
180 small = abs(b-a)*0.3750d+00
erlarg = errsum
ertest = errbnd
rlist2(2) = area
200 continue
c
c set final result and error estimate
c ------------------------------------
c
220 if (abserr.eq.oflow) go to 280
if (ier+ierro.eq.0) go to 260
if (ierro.eq.3) abserr = abserr + correc
if (ier.eq.0) ier = 3
if (result.ne.0.0d+00.and .area. ne.0.0d+00) go to 240
if (abserr.gt.errsum) go to 280
if (area.eq.0.0d+00) go to 320
go to 260
240 if (abserr/abs(result).gt.errsum/abs(area)) go to 280
c
c test on divergency
c
260 if (ksgn.eq.-1 .and. max(abs(result),abs(area)).le.defabs*
*0.10d-01) go to 320
if (0.10d-01.gt.(result/area) .or. (result/area).gt.0.10d+03.or.
* errsum.gt.abs(area)) ier = 6
go to 320
c
c compute global integral sum
c
280 result = 0.0d+00
do 300 k=1,last
result = result + rlist(k)
300 continue
abserr = errsum
320 if (ier.gt.2) ier = ier - 1
iord(1) = 4*last1
return
end
|