1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
subroutine matqr
C ================================== ( Inria ) =============
C evaluate functions involving qr decomposition (least squares)
C ====================================================================
c Copyright INRIA
include '../stack.h'
integer iadr,sadr
C
double precision t(1),tol,eps,sr,si,tt
integer vol
C
C fin -2 -1 1
C a\a2 a/a2 qr
C
iadr(l) = l + l - 1
sadr(l) = (l/2) + 1
C
if (ddt .eq. 4) then
write (buf(1:4),'(i4)') fin
call basout(io,wte,' matqr '//buf(1:4))
endif
C
eps = stk(leps)
C
il = iadr(lstk(top-rhs+1))
if (istk(il) .ne. 1) then
if(fin.eq.1) then
call putfunnam('qr',top-rhs+1)
fun=-1
return
else
err = rhs
call error(53)
return
endif
endif
m = istk(il+1)
n = istk(il+2)
it = istk(il+3)
l = sadr(il+4)
C
goto (14,10,99,40) fin+3
C
C rectangular matrix right division, a/a2
C call left division for a2'\a
C
10 continue
C on interverti l'ordre de a et a2
l1 = lstk(top-1)
l2 = lstk(top)
l3 = lstk(top+1)
ll = l1 + l3 - l2
err = ll + l3 - l1 - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
call unsfdcopy(l3-l1,stk(l1),-1,stk(ll),-1)
call unsfdcopy(l3-l2,stk(ll+l2-l1),1,stk(l1),1)
lstk(top) = ll
lstk(top+1) = ll + l2 - l1
C transposition a2
lw = lstk(top+1)
il1 = iadr(lstk(top))
m1 = istk(il1+1)
n1 = istk(il1+2)
it1 = istk(il1+3)
mn1 = m1 * n1
l1 = sadr(il1+4)
if (mn1.eq.0 .or. istk(il1).eq.0) goto 11
vol = mn1 * (it1+1)
ll = lw
err = ll + vol - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
C
istk(il1+1) = n1
istk(il1+2) = m1
C
call unsfdcopy(vol,stk(l1),1,stk(ll),1)
call mtran(stk(ll),m1,stk(l1),n1,m1,n1)
if (it1 .eq. 0) goto 11
call mtran(stk(ll+mn1),m1,stk(l1+mn1),n1,m1,n1)
call dscal(mn1,-1.0d+0,stk(l1+mn1),1)
C
C transposition a
11 continue
il1 = iadr(lstk(top-1))
m1 = istk(il1+1)
n1 = istk(il1+2)
it1 = istk(il1+3)
mn1 = m1 * n1
l1 = sadr(il1+4)
if (mn1.eq.0 .or. istk(il1).eq.0) goto 12
vol = mn1 * (it1+1)
ll = lw
err = ll + vol - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
C
istk(il1+1) = n1
istk(il1+2) = m1
C
call unsfdcopy(vol,stk(l1),1,stk(ll),1)
call mtran(stk(ll),m1,stk(l1),n1,m1,n1)
if (it1 .eq. 0) goto 12
call mtran(stk(ll+mn1),m1,stk(l1+mn1),n1,m1,n1)
call dscal(mn1,-1.0d+0,stk(l1+mn1),1)
C
12 top = top - 1
il = iadr(lstk(top))
m = istk(il+1)
n = istk(il+2)
it = istk(il+3)
l = sadr(il+4)
goto 15
C
C rectangular matrix left division a backslash a2
C
14 top = top - 1
15 il2 = iadr(lstk(top+1))
m2 = istk(il2+1)
n2 = istk(il2+2)
it2 = istk(il2+3)
l2 = sadr(il2+4)
if (m2*n2 .gt. 1) goto 16
C scalar divided by a matrix
m2 = m
n2 = m
err = l2 + m*m*(it2+1) - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
sr = stk(l2)
if (it2 .eq. 1) si = stk(l2+1)
call dset(m*m*(it2+1),0.0d+0,stk(l2),1)
call dset(m,sr,stk(l2),m+1)
if (it2 .eq. 1) call dset(m,si,stk(l2+m*m),m+1)
C
16 if (m2 .ne. m) then
call error(10-fin)
return
endif
it1 = max(it,it2)
nn2 = max(m,n) * n2
l3 = l2 + nn2*(it1+1)
l4 = l3 + n*(it+1)
ilb = iadr(l4+n*(it+1))
err = sadr(ilb+n) - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
if (m .ge. n) goto 23
C on plonge a2 dans une matrice ayant des lignes de longueur n
mn2 = m * n2
ls = l2 + mn2*(it2+1)
ll = l2 + nn2*(it2+1)
mn = n2 * (it2+1)
do 22 j = 1,mn
ll = ll - n
ls = ls - m
call unsfdcopy(m,stk(ls),-1,stk(ll),-1)
22 continue
C factorisation qr
23 do 24 j = 1,n
istk(ilb+j-1) = 0
24 continue
if (it .eq. 0)
& call dqrdc(stk(l),m,m,n,stk(l4),istk(ilb),stk(l3),1)
if (it .eq. 1)
& call wqrdc(stk(l),stk(l+m*n),m,m,n,stk(l4),stk(l4+n),istk(ilb),
& stk(l3),stk(l3+n),1)
C determination du rang
k = 0
tt = abs(stk(l))
if (it .eq. 1) tt = tt + abs(stk(l+m*n))
tol = dble(max(m,n)) * eps * tt
mn = min(m,n)
do 25 j = 1,mn
ls = l + j - 1 + (j-1)*m
tt = abs(stk(ls))
if (it .eq. 1) tt = tt + abs(stk(ls+m*n))
if (tt .gt. tol) k = j
25 continue
if (k .lt. mn) then
write (buf(1:17),'(i4,1pd13.4)') k, tol
call basout(io,wte,
& ' deficient rank: rank ='//buf(1:4)//' - tol ='//
& buf(5:17))
endif
mn = max(m,n)
C resolution
if (it .eq. 1) goto 28
C a est reelle
ls = l2
do 27 j = 1,n2
call dqrsl(stk(l),m,m,k,stk(l4),stk(ls),t,stk(ls),stk(ls),t,t,
& 100,info)
call dset(n-k,0.0d+0,stk(ls+k),1)
if (it2 .eq. 0) goto 27
call dqrsl(stk(l),m,m,k,stk(l4),stk(ls+nn2),t,stk(ls+nn2),
& stk(ls+nn2),t,t,100,info)
call dset(n-k,0.0d+0,stk(ls+nn2+k),1)
27 ls = ls + mn
goto 30
28 continue
C cas a complexe
if (it2 .eq. 0) call dset(nn2,0.0d+0,stk(l2+nn2),1)
do 29 j = 1,n2
ls = l2 + (j-1)*mn
call wqrsl(stk(l),stk(l+m*n),m,m,k,stk(l4),stk(l4+n),stk(ls),
& stk(ls+nn2),t,t,stk(ls),stk(ls+nn2),stk(ls),
& stk(ls+nn2),t,t,t,t,100,info)
ll = ls + k
call dset(n-k,0.0d+0,stk(ll),1)
call dset(n-k,0.0d+0,stk(ll+nn2),1)
29 continue
C permutations
30 continue
do 31 j = 1,n
istk(ilb+j-1) = -istk(ilb+j-1)
31 continue
do 35 j = 1,n
if (istk(ilb+j-1) .gt. 0) goto 35
k = -istk(ilb+j-1)
istk(ilb+j-1) = k
33 continue
if (k .eq. j) goto 34
ls = l2 + j - 1
ll = l2 + k - 1
call dswap(n2,stk(ls),mn,stk(ll),mn)
if (it1 .eq. 1) call dswap(n2,stk(ls+nn2),mn,stk(ll+nn2),mn)
istk(ilb+k-1) = -istk(ilb+k-1)
k = istk(ilb+k-1)
goto 33
34 continue
35 continue
do 36 j = 1,n2
ls = l2 + (j-1)*mn
ll = l + (j-1)*n
call unsfdcopy(n,stk(ls),1,stk(ll),1)
36 continue
if (it1 .eq. 0) goto 38
do 37 j = 1,n2
ls = l2 + (j-1)*mn + mn*n2
ll = l + n*n2 + (j-1)*n
call unsfdcopy(n,stk(ls),1,stk(ll),1)
37 continue
38 continue
istk(il+1) = n
istk(il+2) = n2
istk(il+3) = it1
lstk(top+1) = l + n*n2*(it1+1)
rhs = 1
if (fin .eq. -1) then
il1 = iadr(lstk(top))
m1 = istk(il1+1)
n1 = istk(il1+2)
it1 = istk(il1+3)
mn1 = m1 * n1
l1 = sadr(il1+4)
if (mn1.eq.0 .or. istk(il1).eq.0) goto 99
vol = mn1 * (it1+1)
ll = lstk(top+1)
err = ll + vol - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
C
istk(il1+1) = n1
istk(il1+2) = m1
C
call unsfdcopy(vol,stk(l1),1,stk(ll),1)
call mtran(stk(ll),m1,stk(l1),n1,m1,n1)
if (it1 .eq. 0) goto 99
call mtran(stk(ll+mn1),m1,stk(l1+mn1),n1,m1,n1)
call dscal(mn1,-1.0d+0,stk(l1+mn1),1)
endif
goto 99
C
C qr
40 if (top+lhs .ge. bot) then
call error(18)
return
endif
if (rhs .eq. 2) then
il = iadr(lstk(top))
tol = stk(sadr(il+4))
top = top - 1
endif
C
if (fin.eq.1 .and. (lhs.lt.2.or.lhs.gt.4.or.
$ rhs.eq.2.and.lhs.eq.3)) then
call error(41)
return
endif
C
mn = m * n
mm = m * m
job = 0
C implantation des resultats et tableaux de travail
ilq = iadr(lstk(top))
lq = l
lstk(top+1) = lq + mm*(it+1)
C
top = top + 1
ilr = iadr(lstk(top))
lr = sadr(ilr+4)
lstk(top+1) = lr + mn*(it+1)
C
if (lhs .eq. 4) then
top = top + 1
ilrk = iadr(lstk(top))
lrk = sadr(ilrk+4)
lstk(top+1) = lrk + 1
endif
C
if (lhs .ge. 3) then
C on calcule et on stocke e
top = top + 1
nn = n * n
job = 1
ile = iadr(lstk(top))
le = sadr(ile+4)
lstk(top+1) = le + nn
endif
C
laux = lstk(top+1)
lw = laux + n*(it+1)
ilb = iadr(lw+n*(it+1))
err = sadr(ilb+n) - lstk(bot)
if (err .gt. 0) then
call error(17)
return
endif
C
C calcul de la dcomposition qr
call unsfdcopy(mn*(it+1),stk(l),-1,stk(lr),-1)
do 43 j = 1,n
istk(ilb+j-1) = 0
43 continue
if (it .eq. 0)
& call dqrdc(stk(lr),m,m,n,stk(laux),istk(ilb),stk(lw),job)
if (it .eq. 1)
& call wqrdc(stk(lr),stk(lr+mn),m,m,n,stk(laux),stk(laux+n),
& istk(ilb),stk(lw),stk(lw+n),job)
C
C affectation des resultats
C
C affectation de q
call dset(mm*(it+1),0.0d+0,stk(lq),1)
call dset(m,1.0d+0,stk(lq),m+1)
ll = lq
do 44 j = 1,m
if (it .eq. 0)
& call dqrsl(stk(lr),m,m,n,stk(laux),stk(ll),stk(ll),t,t,t,t,
& 10000,info)
if (it .eq. 1)
& call wqrsl(stk(lr),stk(lr+mn),m,m,n,stk(laux),stk(laux+n),
& stk(ll),stk(ll+mm),stk(ll),stk(ll+mm),t,t,t,t,t,t,
& t,t,10000,info)
ll = ll + m
44 continue
istk(ilq+1) = m
istk(ilq+2) = m
m1 = min(m-1,n)
ll = lr + 1
do 51 j = 1,m1
call dset(m-j,0.0d+0,stk(ll),1)
if (it .eq. 1) call dset(m-j,0.0d+0,stk(ll+mn),1)
ll = ll + m + 1
51 continue
istk(ilr) = 1
istk(ilr+1) = m
istk(ilr+2) = n
istk(ilr+3) = it
C
if (lhs .eq. 2) goto 99
if (lhs .eq. 4) then
C ############# calcul du rang
tt = abs(stk(lr))
if (it .eq. 1) tt = tt + abs(stk(lr+mn))
if(rhs.eq.1) tol = dble(max(m,n)) * eps * tt
k = 0
ls = lr
m1 = min(m,n)
do 450 j = 1,m1
tt = abs(stk(ls))
if (it .eq. 1) tt = tt + abs(stk(ls+mn))
if (tt .le. tol) goto 460
k = j
ls = ls + m + 1
450 continue
460 istk(ilrk) = 1
istk(ilrk+1) = 1
istk(ilrk+2) = 1
istk(ilrk+3) = 0
stk(lrk) = dble(k)
endif
C ############# affectation de e
call dset(nn,0.0d+0,stk(le),1)
ll = le - 1
do 52 j = 1,n
stk(ll+istk(ilb+j-1)) = 1.0d+0
ll = ll + n
52 continue
istk(ile) = 1
istk(ile+1) = n
istk(ile+2) = n
istk(ile+3) = 0
goto 99
C
99 return
end
|