| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 
 |       SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            IHI, ILO, INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  DGEHRD reduces a real general matrix A to upper Hessenberg form H by
*  an orthogonal similarity transformation:  Q' * A * Q = H .
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          It is assumed that A is already upper triangular in rows
*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*          set by a previous call to DGEBAL; otherwise they should be
*          set to 1 and N respectively. See Further Details.
*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the N-by-N general matrix to be reduced.
*          On exit, the upper triangle and the first subdiagonal of A
*          are overwritten with the upper Hessenberg matrix H, and the
*          elements below the first subdiagonal, with the array TAU,
*          represent the orthogonal matrix Q as a product of elementary
*          reflectors. See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  TAU     (output) DOUBLE PRECISION array, dimension (N-1)
*          The scalar factors of the elementary reflectors (see Further
*          Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
*          zero.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK >= max(1,N).
*          For optimum performance LWORK >= N*NB, where NB is the
*          optimal blocksize.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of (ihi-ilo) elementary
*  reflectors
*
*     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
*  exit in A(i+2:ihi,i), and tau in TAU(i).
*
*  The contents of A are illustrated by the following example, with
*  n = 7, ilo = 2 and ihi = 6:
*
*  on entry,                        on exit,
*
*  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
*  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
*  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
*  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
*  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
*  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
*  (                         a )    (                          a )
*
*  where a denotes an element of the original matrix A, h denotes a
*  modified element of the upper Hessenberg matrix H, and vi denotes an
*  element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NBMAX, LDT
      PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IB, IINFO, IWS, LDWORK, NB, NBMIN, NH, NX
      DOUBLE PRECISION   EI
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   T( LDT, NBMAX )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEHD2, DGEMM, DLAHRD, DLARFB, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -2
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LWORK.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGEHRD', -INFO )
         RETURN
      END IF
*
*     Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
*
      DO 10 I = 1, ILO - 1
         TAU( I ) = ZERO
   10 CONTINUE
      DO 20 I = MAX( 1, IHI ), N - 1
         TAU( I ) = ZERO
   20 CONTINUE
*
*     Quick return if possible
*
      NH = IHI - ILO + 1
      IF( NH.LE.1 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
*     Determine the block size.
*
      NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
      NBMIN = 2
      IWS = 1
      IF( NB.GT.1 .AND. NB.LT.NH ) THEN
*
*        Determine when to cross over from blocked to unblocked code
*        (last block is always handled by unblocked code).
*
         NX = MAX( NB, ILAENV( 3, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
         IF( NX.LT.NH ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            IWS = N*NB
            IF( LWORK.LT.IWS ) THEN
*
*              Not enough workspace to use optimal NB:  determine the
*              minimum value of NB, and reduce NB or force use of
*              unblocked code.
*
               NBMIN = MAX( 2, ILAENV( 2, 'DGEHRD', ' ', N, ILO, IHI,
     $                 -1 ) )
               IF( LWORK.GE.N*NBMIN ) THEN
                  NB = LWORK / N
               ELSE
                  NB = 1
               END IF
            END IF
         END IF
      END IF
      LDWORK = N
*
      IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
*
*        Use unblocked code below
*
         I = ILO
*
      ELSE
*
*        Use blocked code
*
         DO 30 I = ILO, IHI - 1 - NX, NB
            IB = MIN( NB, IHI-I )
*
*           Reduce columns i:i+ib-1 to Hessenberg form, returning the
*           matrices V and T of the block reflector H = I - V*T*V'
*           which performs the reduction, and also the matrix Y = A*V*T
*
            CALL DLAHRD( IHI, I, IB, A( 1, I ), LDA, TAU( I ), T, LDT,
     $                   WORK, LDWORK )
*
*           Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
*           right, computing  A := A - Y * V'. V(i+ib,ib-1) must be set
*           to 1.
*
            EI = A( I+IB, I+IB-1 )
            A( I+IB, I+IB-1 ) = ONE
            CALL DGEMM( 'No transpose', 'Transpose', IHI, IHI-I-IB+1,
     $                  IB, -ONE, WORK, LDWORK, A( I+IB, I ), LDA, ONE,
     $                  A( 1, I+IB ), LDA )
            A( I+IB, I+IB-1 ) = EI
*
*           Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
*           left
*
            CALL DLARFB( 'Left', 'Transpose', 'Forward', 'Columnwise',
     $                   IHI-I, N-I-IB+1, IB, A( I+1, I ), LDA, T, LDT,
     $                   A( I+1, I+IB ), LDA, WORK, LDWORK )
   30    CONTINUE
      END IF
*
*     Use unblocked code to reduce the rest of the matrix
*
      CALL DGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO )
      WORK( 1 ) = IWS
*
      RETURN
*
*     End of DGEHRD
*
      END
 |