1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
|
subroutine fcube(t,f,fp,ta,fa,fpa,tlower,tupper)
c Copyright INRIA
implicit double precision (a-h,o-z)
c
c Using f and fp at t and ta, computes new t by cubic formula
c safeguarded inside [tlower,tupper].
c
z1=fp+fpa-3.d0*(fa-f)/(ta-t)
b=z1+fp
c
c first compute the discriminant (without overflow)
c
if (dabs(z1).le.1.d0) then
discri=z1*z1-fp*fpa
else
discri=fp/z1
discri=discri*fpa
discri=z1-discri
if (z1.ge.0.d0 .and. discri.ge.0.d0) then
discri=dsqrt(z1)*dsqrt(discri)
go to 200
endif
if (z1.le.0.d0 .and. discri.le.0.d0) then
discri=dsqrt(-z1)*dsqrt(-discri)
go to 200
endif
discri=-1.d0
endif
if (discri.lt.0.d0) then
if (fp.lt.0.d0) t=tupper
if (fp.ge.0.d0) t=tlower
go to 990
endif
c
c discriminant nonnegative, stable solution formula
c
discri=dsqrt(discri)
200 if (t-ta.lt.0.d0) discri=-discri
sign=(t-ta)/dabs(t-ta)
if (b*sign.gt.0.) then
anum=(ta-t)*fp
den=b+discri
else
den=z1+b+fpa
anum=(ta-t)*(b-discri)
endif
c
c now compute the ratio (without overflow)
c
if (dabs(den).ge.1.d0) then
t=t+anum/den
else
if (dabs(anum).lt.(tupper-tlower)*dabs(den)) then
t=t+anum/den
else
if (fp.lt.0.d0) t=tupper
if (fp.ge.0.d0) t=tlower
endif
endif
c
c finally, safeguard
c
t=dmax1(t,tlower)
t=dmin1(t,tupper)
990 return
end
|