File: dfftmx.f

package info (click to toggle)
scilab 2.6-4
  • links: PTS
  • area: non-free
  • in suites: woody
  • size: 54,632 kB
  • ctags: 40,267
  • sloc: ansic: 267,851; fortran: 166,549; sh: 10,005; makefile: 4,119; tcl: 1,070; cpp: 233; csh: 143; asm: 135; perl: 130; java: 39
file content (537 lines) | stat: -rw-r--r-- 12,124 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
      subroutine dfftmx(a, b, ntot, n, nspan, isn, m, kt, wt, ck, bt,
     *    sk, np, nfac)
c
      implicit double precision(a-h,o-z)
      dimension a(*), b(*), wt(*), ck(*), bt(*), sk(*), np(*), nfac(*)
c
      inc = abs(isn)
      nt = inc*ntot
      ks = inc*nspan
      rad = atan(1.0d+0)
      s72 = rad/0.6250d+0
      c72 = cos(s72)
      s72 = sin(s72)
      s120 = sqrt(0.750d+0)
      if (isn.gt.0) go to 10
      s72 = -s72
      s120 = -s120
      rad = -rad
      go to 30
c
c scale by 1/n for isn .gt. 0
c
  10  ak = 1.0d+0/dble(n)
      do 20 j=1,nt,inc
        a(j) = a(j)*ak
        b(j) = b(j)*ak
  20  continue
c
  30  kspan = ks
      nn = nt - inc
      jc = ks/n
c
c sin, cos values are re-initialized each lim steps
c
      lim = 32
      klim = lim*jc
      i = 0
      jf = 0
      maxf = m - kt
      maxf = nfac(maxf)
      if (kt.gt.0) maxf = max(nfac(kt),maxf)
c
c compute fourier transform
c
  40  dr = 8.0d+0*dble(jc)/dble(kspan)
      cd = 2.0d+0*sin(0.50d+0*dr*rad)**2
      sd = sin(dr*rad)
      kk = 1
      i = i + 1
      if (nfac(i).ne.2) go to 110
c
c transform for factor of 2 (including rotation factor)
c
      kspan = kspan/2
      k1 = kspan + 2
  50  k2 = kk + kspan
      ak = a(k2)
      bk = b(k2)
      a(k2) = a(kk) - ak
      b(k2) = b(kk) - bk
      a(kk) = a(kk) + ak
      b(kk) = b(kk) + bk
      kk = k2 + kspan
      if (kk.le.nn) go to 50
      kk = kk - nn
      if (kk.le.jc) go to 50
      if (kk.gt.kspan) go to 350
  60  c1 = 1.0d+0- cd
      s1 = sd
      mm = min(k1/2,klim)
      go to 80
  70  ak = c1 - (cd*c1+sd*s1)
      s1 = (sd*c1-cd*s1) + s1
c
c the following three statements compensate for truncation
c error.  if rounded arithmetic is used, substitute
c c1=ak
c
      c1 = 0.50d+0/(ak**2+s1**2) + 0.50d+0
      s1 = c1*s1
      c1 = c1*ak
  80  k2 = kk + kspan
      ak = a(kk) - a(k2)
      bk = b(kk) - b(k2)
      a(kk) = a(kk) + a(k2)
      b(kk) = b(kk) + b(k2)
      a(k2) = c1*ak - s1*bk
      b(k2) = s1*ak + c1*bk
      kk = k2 + kspan
      if (kk.lt.nt) go to 80
      k2 = kk - nt
      c1 = -c1
      kk = k1 - k2
      if (kk.gt.k2) go to 80
      kk = kk + jc
      if (kk.le.mm) go to 70
      if (kk.lt.k2) go to 90
      k1 = k1 + inc + inc
      kk = (k1-kspan)/2 + jc
      if (kk.le.jc+jc) go to 60
      go to 40
  90  s1 = dble((kk-1)/jc)*dr*rad
      c1 = cos(s1)
      s1 = sin(s1)
      mm = min(k1/2,mm+klim)
      go to 80
c
c transform for factor of 3 (optional code)
c
 100  k1 = kk + kspan
      k2 = k1 + kspan
      ak = a(kk)
      bk = b(kk)
      aj = a(k1) + a(k2)
      bj = b(k1) + b(k2)
      a(kk) = ak + aj
      b(kk) = bk + bj
      ak = -0.50d+0*aj + ak
      bk = -0.50d+0*bj + bk
      aj = (a(k1)-a(k2))*s120
      bj = (b(k1)-b(k2))*s120
      a(k1) = ak - bj
      b(k1) = bk + aj
      a(k2) = ak + bj
      b(k2) = bk - aj
      kk = k2 + kspan
      if (kk.lt.nn) go to 100
      kk = kk - nn
      if (kk.le.kspan) go to 100
      go to 290
c
c transform for factor of 4
c
 110  if (nfac(i).ne.4) go to 230
      kspnn = kspan
      kspan = kspan/4
 120  c1 = 1.0d+0
      s1 = 0.0d+0
      mm = min(kspan,klim)
      go to 150
 130  c2 = c1 - (cd*c1+sd*s1)
      s1 = (sd*c1-cd*s1) + s1
c
c the following three statements compensate for truncation
c error.  if rounded arithmetic is used, substitute
c c1=c2
c
      c1 = 0.50d+0/(c2**2+s1**2) + 0.50d+0
      s1 = c1*s1
      c1 = c1*c2
 140  c2 = c1**2 - s1**2
      s2 = c1*s1*2.0
      c3 = c2*c1 - s2*s1
      s3 = c2*s1 + s2*c1
 150  k1 = kk + kspan
      k2 = k1 + kspan
      k3 = k2 + kspan
      akp = a(kk) + a(k2)
      akm = a(kk) - a(k2)
      ajp = a(k1) + a(k3)
      ajm = a(k1) - a(k3)
      a(kk) = akp + ajp
      ajp = akp - ajp
      bkp = b(kk) + b(k2)
      bkm = b(kk) - b(k2)
      bjp = b(k1) + b(k3)
      bjm = b(k1) - b(k3)
      b(kk) = bkp + bjp
      bjp = bkp - bjp
      if (isn.lt.0) go to 180
      akp = akm - bjm
      akm = akm + bjm
      bkp = bkm + ajm
      bkm = bkm - ajm
      if (s1.eq.0.0d+0) go to 190
 160  a(k1) = akp*c1 - bkp*s1
      b(k1) = akp*s1 + bkp*c1
      a(k2) = ajp*c2 - bjp*s2
      b(k2) = ajp*s2 + bjp*c2
      a(k3) = akm*c3 - bkm*s3
      b(k3) = akm*s3 + bkm*c3
      kk = k3 + kspan
      if (kk.le.nt) go to 150
 170  kk = kk - nt + jc
      if (kk.le.mm) go to 130
c      MODIF HERE  (WAS .lt.)
      if (kk.le.kspan) go to 200
      kk = kk - kspan + inc
      if (kk.le.jc) go to 120
      if (kspan.eq.jc) go to 350
      go to 40
 180  akp = akm + bjm
      akm = akm - bjm
      bkp = bkm - ajm
      bkm = bkm + ajm
      if (s1.ne.0.0d+0) go to 160
 190  a(k1) = akp
      b(k1) = bkp
      a(k2) = ajp
      b(k2) = bjp
      a(k3) = akm
      b(k3) = bkm
      kk = k3 + kspan
      if (kk.le.nt) go to 150
      go to 170
 200  s1 = dble((kk-1)/jc)*dr*rad
      c1 = cos(s1)
      s1 = sin(s1)
      mm = min(kspan,mm+klim)
      go to 140
c
c transform for factor of 5 (optional code)
c
 210  c2 = c72**2 - s72**2
      s2 = 2.0d+0*c72*s72
 220  k1 = kk + kspan
      k2 = k1 + kspan
      k3 = k2 + kspan
      k4 = k3 + kspan
      akp = a(k1) + a(k4)
      akm = a(k1) - a(k4)
      bkp = b(k1) + b(k4)
      bkm = b(k1) - b(k4)
      ajp = a(k2) + a(k3)
      ajm = a(k2) - a(k3)
      bjp = b(k2) + b(k3)
      bjm = b(k2) - b(k3)
      aa = a(kk)
      bb = b(kk)
      a(kk) = aa + akp + ajp
      b(kk) = bb + bkp + bjp
      ak = akp*c72 + ajp*c2 + aa
      bk = bkp*c72 + bjp*c2 + bb
      aj = akm*s72 + ajm*s2
      bj = bkm*s72 + bjm*s2
      a(k1) = ak - bj
      a(k4) = ak + bj
      b(k1) = bk + aj
      b(k4) = bk - aj
      ak = akp*c2 + ajp*c72 + aa
      bk = bkp*c2 + bjp*c72 + bb
      aj = akm*s2 - ajm*s72
      bj = bkm*s2 - bjm*s72
      a(k2) = ak - bj
      a(k3) = ak + bj
      b(k2) = bk + aj
      b(k3) = bk - aj
      kk = k4 + kspan
      if (kk.lt.nn) go to 220
      kk = kk - nn
      if (kk.le.kspan) go to 220
      go to 290
c
c transform for odd factors
c
 230  k = nfac(i)
      kspnn = kspan
      kspan = kspan/k
      if (k.eq.3) go to 100
      if (k.eq.5) go to 210
      if (k.eq.jf) go to 250
      jf = k
      s1 = rad/(dble(k)/8.0d+0)
      c1 = cos(s1)
      s1 = sin(s1)
      ck(jf) = 1.0d+0
      sk(jf) = 0.0d+0
      j = 1
 240  ck(j) = ck(k)*c1 + sk(k)*s1
      sk(j) = ck(k)*s1 - sk(k)*c1
      k = k - 1
      ck(k) = ck(j)
      sk(k) = -sk(j)
      j = j + 1
      if (j.lt.k) go to 240
 250  k1 = kk
      k2 = kk + kspnn
      aa = a(kk)
      bb = b(kk)
      ak = aa
      bk = bb
      j = 1
      k1 = k1 + kspan
 260  k2 = k2 - kspan
      j = j + 1
      wt(j) = a(k1) + a(k2)
      ak = wt(j) + ak
      bt(j) = b(k1) + b(k2)
      bk = bt(j) + bk
      j = j + 1
      wt(j) = a(k1) - a(k2)
      bt(j) = b(k1) - b(k2)
      k1 = k1 + kspan
      if (k1.lt.k2) go to 260
      a(kk) = ak
      b(kk) = bk
      k1 = kk
      k2 = kk + kspnn
      j = 1
 270  k1 = k1 + kspan
      k2 = k2 - kspan
      jj = j
      ak = aa
      bk = bb
      aj = 0.0d+0
      bj = 0.0d+0
      k = 1
 280  k = k + 1
      ak = wt(k)*ck(jj) + ak
      bk = bt(k)*ck(jj) + bk
      k = k + 1
      aj = wt(k)*sk(jj) + aj
      bj = bt(k)*sk(jj) + bj
      jj = jj + j
      if (jj.gt.jf) jj = jj - jf
      if (k.lt.jf) go to 280
      k = jf - j
      a(k1) = ak - bj
      b(k1) = bk + aj
      a(k2) = ak + bj
      b(k2) = bk - aj
      j = j + 1
      if (j.lt.k) go to 270
      kk = kk + kspnn
      if (kk.le.nn) go to 250
      kk = kk - nn
      if (kk.le.kspan) go to 250
c
c multiply by rotation factor (except for factors of 2 and 4)
c
 290  if (i.eq.m) go to 350
      kk = jc + 1
 300  c2 = 1.0d+0- cd
      s1 = sd
      mm = min(kspan,klim)
      go to 320
 310  continue
      c2 = c1 - (cd*c1+sd*s1)
      s1 = s1 + (sd*c1-cd*s1)
c
c the following three statements compensate for truncation
c error.  if rounded arithmetic is used, they may
c be deleted.
c
      c1 = 0.50d+0/(c2**2+s1**2) + 0.50d+0
      s1 = c1*s1
      c2 = c1*c2
 320  c1 = c2
      s2 = s1
      kk = kk + kspan
 330  ak = a(kk)
      a(kk) = c2*ak - s2*b(kk)
      b(kk) = s2*ak + c2*b(kk)
      kk = kk + kspnn
      if (kk.le.nt) go to 330
      ak = s1*s2
      s2 = s1*c2 + c1*s2
      c2 = c1*c2 - ak
      kk = kk - nt + kspan
      if (kk.le.kspnn) go to 330
      kk = kk - kspnn + jc
      if (kk.le.mm) go to 310
c             MODIFICATION OF ORIGINAL CODE:
      if (kk.le.kspan) go to 340
c         SINGLETON's CODE was:
c     if (kk.lt.kspan) go to 340
      kk = kk - kspan + jc + inc
      if (kk.le.jc+jc) go to 300
      go to 40
 340  s1 = dble((kk-1)/jc)*dr*rad
      c2 = cos(s1)
      s1 = sin(s1)
      mm = min(kspan,mm+klim)
      go to 320
c
c permute the results to normal order---done in two stages
c permutation for square factors of n
c
 350  np(1) = ks
      if (kt.eq.0) go to 440
      k = kt + kt + 1
      if (m.lt.k) k = k - 1
      j = 1
      np(k+1) = jc
 360  np(j+1) = np(j)/nfac(j)
      np(k) = np(k+1)*nfac(j)
      j = j + 1
      k = k - 1
      if (j.lt.k) go to 360
      k3 = np(k+1)
      kspan = np(2)
      kk = jc + 1
      k2 = kspan + 1
      j = 1
      if (n.ne.ntot) go to 400
c
c permutation for single-variate transform (optional code)
c
 370  ak = a(kk)
      a(kk) = a(k2)
      a(k2) = ak
      bk = b(kk)
      b(kk) = b(k2)
      b(k2) = bk
      kk = kk + inc
      k2 = kspan + k2
      if (k2.lt.ks) go to 370
 380  k2 = k2 - np(j)
      j = j + 1
      k2 = np(j+1) + k2
      if (k2.gt.np(j)) go to 380
      j = 1
 390  if (kk.lt.k2) go to 370
      kk = kk + inc
      k2 = kspan + k2
      if (k2.lt.ks) go to 390
      if (kk.lt.ks) go to 380
      jc = k3
      go to 440
c
c permutation for multivariate transform
c
 400  k = kk + jc
 410  ak = a(kk)
      a(kk) = a(k2)
      a(k2) = ak
      bk = b(kk)
      b(kk) = b(k2)
      b(k2) = bk
      kk = kk + inc
      k2 = k2 + inc
      if (kk.lt.k) go to 410
      kk = kk + ks - jc
      k2 = k2 + ks - jc
      if (kk.lt.nt) go to 400
      k2 = k2 - nt + kspan
      kk = kk - nt + jc
      if (k2.lt.ks) go to 400
 420  k2 = k2 - np(j)
      j = j + 1
      k2 = np(j+1) + k2
      if (k2.gt.np(j)) go to 420
      j = 1
 430  if (kk.lt.k2) go to 400
      kk = kk + jc
      k2 = kspan + k2
      if (k2.lt.ks) go to 430
      if (kk.lt.ks) go to 420
      jc = k3
 440  if (2*kt+1.ge.m) return
      kspnn = np(kt+1)
c
c permutation for square-free factors of n
c
      j = m - kt
      nfac(j+1) = 1
 450  nfac(j) = nfac(j)*nfac(j+1)
      j = j - 1
      if (j.ne.kt) go to 450
      kt = kt + 1
      nn = nfac(kt) - 1
      jj = 0
      j = 0
      go to 480
 460  jj = jj - k2
      k2 = kk
      k = k + 1
      kk = nfac(k)
 470  jj = kk + jj
      if (jj.ge.k2) go to 460
      np(j) = jj
 480  k2 = nfac(kt)
      k = kt + 1
      kk = nfac(k)
      j = j + 1
      if (j.le.nn) go to 470
c
c determine the permutation cycles of length greater than 1
c
      j = 0
      go to 500
 490  k = kk
      kk = np(k)
      np(k) = -kk
      if (kk.ne.j) go to 490
      k3 = kk
 500  j = j + 1
      kk = np(j)
      if (kk.lt.0) go to 500
      if (kk.ne.j) go to 490
      np(j) = -j
      if (j.ne.nn) go to 500
      maxf = inc*maxf
c
c reorder a and b, following the permutation cycles
c
      go to 570
 510  j = j - 1
      if (np(j).lt.0) go to 510
      jj = jc
 520  kspan = jj
      if (jj.gt.maxf) kspan = maxf
      jj = jj - kspan
      k = np(j)
      kk = jc*k + i + jj
      k1 = kk + kspan
      k2 = 0
 530  k2 = k2 + 1
      wt(k2) = a(k1)
      bt(k2) = b(k1)
      k1 = k1 - inc
      if (k1.ne.kk) go to 530
 540  k1 = kk + kspan
      k2 = k1 - jc*(k+np(k))
      k = -np(k)
 550  a(k1) = a(k2)
      b(k1) = b(k2)
      k1 = k1 - inc
      k2 = k2 - inc
      if (k1.ne.kk) go to 550
      kk = k2
      if (k.ne.j) go to 540
      k1 = kk + kspan
      k2 = 0
 560  k2 = k2 + 1
      a(k1) = wt(k2)
      b(k1) = bt(k2)
      k1 = k1 - inc
      if (k1.ne.kk) go to 560
      if (jj.ne.0) go to 520
      if (j.ne.1) go to 510
 570  j = k3 + 1
      nt = nt - kspnn
      i = nt - inc + 1
      if (nt.ge.0) go to 510
      return
      end