1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
subroutine dfftmx(a, b, ntot, n, nspan, isn, m, kt, wt, ck, bt,
* sk, np, nfac)
c
implicit double precision(a-h,o-z)
dimension a(*), b(*), wt(*), ck(*), bt(*), sk(*), np(*), nfac(*)
c
inc = abs(isn)
nt = inc*ntot
ks = inc*nspan
rad = atan(1.0d+0)
s72 = rad/0.6250d+0
c72 = cos(s72)
s72 = sin(s72)
s120 = sqrt(0.750d+0)
if (isn.gt.0) go to 10
s72 = -s72
s120 = -s120
rad = -rad
go to 30
c
c scale by 1/n for isn .gt. 0
c
10 ak = 1.0d+0/dble(n)
do 20 j=1,nt,inc
a(j) = a(j)*ak
b(j) = b(j)*ak
20 continue
c
30 kspan = ks
nn = nt - inc
jc = ks/n
c
c sin, cos values are re-initialized each lim steps
c
lim = 32
klim = lim*jc
i = 0
jf = 0
maxf = m - kt
maxf = nfac(maxf)
if (kt.gt.0) maxf = max(nfac(kt),maxf)
c
c compute fourier transform
c
40 dr = 8.0d+0*dble(jc)/dble(kspan)
cd = 2.0d+0*sin(0.50d+0*dr*rad)**2
sd = sin(dr*rad)
kk = 1
i = i + 1
if (nfac(i).ne.2) go to 110
c
c transform for factor of 2 (including rotation factor)
c
kspan = kspan/2
k1 = kspan + 2
50 k2 = kk + kspan
ak = a(k2)
bk = b(k2)
a(k2) = a(kk) - ak
b(k2) = b(kk) - bk
a(kk) = a(kk) + ak
b(kk) = b(kk) + bk
kk = k2 + kspan
if (kk.le.nn) go to 50
kk = kk - nn
if (kk.le.jc) go to 50
if (kk.gt.kspan) go to 350
60 c1 = 1.0d+0- cd
s1 = sd
mm = min(k1/2,klim)
go to 80
70 ak = c1 - (cd*c1+sd*s1)
s1 = (sd*c1-cd*s1) + s1
c
c the following three statements compensate for truncation
c error. if rounded arithmetic is used, substitute
c c1=ak
c
c1 = 0.50d+0/(ak**2+s1**2) + 0.50d+0
s1 = c1*s1
c1 = c1*ak
80 k2 = kk + kspan
ak = a(kk) - a(k2)
bk = b(kk) - b(k2)
a(kk) = a(kk) + a(k2)
b(kk) = b(kk) + b(k2)
a(k2) = c1*ak - s1*bk
b(k2) = s1*ak + c1*bk
kk = k2 + kspan
if (kk.lt.nt) go to 80
k2 = kk - nt
c1 = -c1
kk = k1 - k2
if (kk.gt.k2) go to 80
kk = kk + jc
if (kk.le.mm) go to 70
if (kk.lt.k2) go to 90
k1 = k1 + inc + inc
kk = (k1-kspan)/2 + jc
if (kk.le.jc+jc) go to 60
go to 40
90 s1 = dble((kk-1)/jc)*dr*rad
c1 = cos(s1)
s1 = sin(s1)
mm = min(k1/2,mm+klim)
go to 80
c
c transform for factor of 3 (optional code)
c
100 k1 = kk + kspan
k2 = k1 + kspan
ak = a(kk)
bk = b(kk)
aj = a(k1) + a(k2)
bj = b(k1) + b(k2)
a(kk) = ak + aj
b(kk) = bk + bj
ak = -0.50d+0*aj + ak
bk = -0.50d+0*bj + bk
aj = (a(k1)-a(k2))*s120
bj = (b(k1)-b(k2))*s120
a(k1) = ak - bj
b(k1) = bk + aj
a(k2) = ak + bj
b(k2) = bk - aj
kk = k2 + kspan
if (kk.lt.nn) go to 100
kk = kk - nn
if (kk.le.kspan) go to 100
go to 290
c
c transform for factor of 4
c
110 if (nfac(i).ne.4) go to 230
kspnn = kspan
kspan = kspan/4
120 c1 = 1.0d+0
s1 = 0.0d+0
mm = min(kspan,klim)
go to 150
130 c2 = c1 - (cd*c1+sd*s1)
s1 = (sd*c1-cd*s1) + s1
c
c the following three statements compensate for truncation
c error. if rounded arithmetic is used, substitute
c c1=c2
c
c1 = 0.50d+0/(c2**2+s1**2) + 0.50d+0
s1 = c1*s1
c1 = c1*c2
140 c2 = c1**2 - s1**2
s2 = c1*s1*2.0
c3 = c2*c1 - s2*s1
s3 = c2*s1 + s2*c1
150 k1 = kk + kspan
k2 = k1 + kspan
k3 = k2 + kspan
akp = a(kk) + a(k2)
akm = a(kk) - a(k2)
ajp = a(k1) + a(k3)
ajm = a(k1) - a(k3)
a(kk) = akp + ajp
ajp = akp - ajp
bkp = b(kk) + b(k2)
bkm = b(kk) - b(k2)
bjp = b(k1) + b(k3)
bjm = b(k1) - b(k3)
b(kk) = bkp + bjp
bjp = bkp - bjp
if (isn.lt.0) go to 180
akp = akm - bjm
akm = akm + bjm
bkp = bkm + ajm
bkm = bkm - ajm
if (s1.eq.0.0d+0) go to 190
160 a(k1) = akp*c1 - bkp*s1
b(k1) = akp*s1 + bkp*c1
a(k2) = ajp*c2 - bjp*s2
b(k2) = ajp*s2 + bjp*c2
a(k3) = akm*c3 - bkm*s3
b(k3) = akm*s3 + bkm*c3
kk = k3 + kspan
if (kk.le.nt) go to 150
170 kk = kk - nt + jc
if (kk.le.mm) go to 130
c MODIF HERE (WAS .lt.)
if (kk.le.kspan) go to 200
kk = kk - kspan + inc
if (kk.le.jc) go to 120
if (kspan.eq.jc) go to 350
go to 40
180 akp = akm + bjm
akm = akm - bjm
bkp = bkm - ajm
bkm = bkm + ajm
if (s1.ne.0.0d+0) go to 160
190 a(k1) = akp
b(k1) = bkp
a(k2) = ajp
b(k2) = bjp
a(k3) = akm
b(k3) = bkm
kk = k3 + kspan
if (kk.le.nt) go to 150
go to 170
200 s1 = dble((kk-1)/jc)*dr*rad
c1 = cos(s1)
s1 = sin(s1)
mm = min(kspan,mm+klim)
go to 140
c
c transform for factor of 5 (optional code)
c
210 c2 = c72**2 - s72**2
s2 = 2.0d+0*c72*s72
220 k1 = kk + kspan
k2 = k1 + kspan
k3 = k2 + kspan
k4 = k3 + kspan
akp = a(k1) + a(k4)
akm = a(k1) - a(k4)
bkp = b(k1) + b(k4)
bkm = b(k1) - b(k4)
ajp = a(k2) + a(k3)
ajm = a(k2) - a(k3)
bjp = b(k2) + b(k3)
bjm = b(k2) - b(k3)
aa = a(kk)
bb = b(kk)
a(kk) = aa + akp + ajp
b(kk) = bb + bkp + bjp
ak = akp*c72 + ajp*c2 + aa
bk = bkp*c72 + bjp*c2 + bb
aj = akm*s72 + ajm*s2
bj = bkm*s72 + bjm*s2
a(k1) = ak - bj
a(k4) = ak + bj
b(k1) = bk + aj
b(k4) = bk - aj
ak = akp*c2 + ajp*c72 + aa
bk = bkp*c2 + bjp*c72 + bb
aj = akm*s2 - ajm*s72
bj = bkm*s2 - bjm*s72
a(k2) = ak - bj
a(k3) = ak + bj
b(k2) = bk + aj
b(k3) = bk - aj
kk = k4 + kspan
if (kk.lt.nn) go to 220
kk = kk - nn
if (kk.le.kspan) go to 220
go to 290
c
c transform for odd factors
c
230 k = nfac(i)
kspnn = kspan
kspan = kspan/k
if (k.eq.3) go to 100
if (k.eq.5) go to 210
if (k.eq.jf) go to 250
jf = k
s1 = rad/(dble(k)/8.0d+0)
c1 = cos(s1)
s1 = sin(s1)
ck(jf) = 1.0d+0
sk(jf) = 0.0d+0
j = 1
240 ck(j) = ck(k)*c1 + sk(k)*s1
sk(j) = ck(k)*s1 - sk(k)*c1
k = k - 1
ck(k) = ck(j)
sk(k) = -sk(j)
j = j + 1
if (j.lt.k) go to 240
250 k1 = kk
k2 = kk + kspnn
aa = a(kk)
bb = b(kk)
ak = aa
bk = bb
j = 1
k1 = k1 + kspan
260 k2 = k2 - kspan
j = j + 1
wt(j) = a(k1) + a(k2)
ak = wt(j) + ak
bt(j) = b(k1) + b(k2)
bk = bt(j) + bk
j = j + 1
wt(j) = a(k1) - a(k2)
bt(j) = b(k1) - b(k2)
k1 = k1 + kspan
if (k1.lt.k2) go to 260
a(kk) = ak
b(kk) = bk
k1 = kk
k2 = kk + kspnn
j = 1
270 k1 = k1 + kspan
k2 = k2 - kspan
jj = j
ak = aa
bk = bb
aj = 0.0d+0
bj = 0.0d+0
k = 1
280 k = k + 1
ak = wt(k)*ck(jj) + ak
bk = bt(k)*ck(jj) + bk
k = k + 1
aj = wt(k)*sk(jj) + aj
bj = bt(k)*sk(jj) + bj
jj = jj + j
if (jj.gt.jf) jj = jj - jf
if (k.lt.jf) go to 280
k = jf - j
a(k1) = ak - bj
b(k1) = bk + aj
a(k2) = ak + bj
b(k2) = bk - aj
j = j + 1
if (j.lt.k) go to 270
kk = kk + kspnn
if (kk.le.nn) go to 250
kk = kk - nn
if (kk.le.kspan) go to 250
c
c multiply by rotation factor (except for factors of 2 and 4)
c
290 if (i.eq.m) go to 350
kk = jc + 1
300 c2 = 1.0d+0- cd
s1 = sd
mm = min(kspan,klim)
go to 320
310 continue
c2 = c1 - (cd*c1+sd*s1)
s1 = s1 + (sd*c1-cd*s1)
c
c the following three statements compensate for truncation
c error. if rounded arithmetic is used, they may
c be deleted.
c
c1 = 0.50d+0/(c2**2+s1**2) + 0.50d+0
s1 = c1*s1
c2 = c1*c2
320 c1 = c2
s2 = s1
kk = kk + kspan
330 ak = a(kk)
a(kk) = c2*ak - s2*b(kk)
b(kk) = s2*ak + c2*b(kk)
kk = kk + kspnn
if (kk.le.nt) go to 330
ak = s1*s2
s2 = s1*c2 + c1*s2
c2 = c1*c2 - ak
kk = kk - nt + kspan
if (kk.le.kspnn) go to 330
kk = kk - kspnn + jc
if (kk.le.mm) go to 310
c MODIFICATION OF ORIGINAL CODE:
if (kk.le.kspan) go to 340
c SINGLETON's CODE was:
c if (kk.lt.kspan) go to 340
kk = kk - kspan + jc + inc
if (kk.le.jc+jc) go to 300
go to 40
340 s1 = dble((kk-1)/jc)*dr*rad
c2 = cos(s1)
s1 = sin(s1)
mm = min(kspan,mm+klim)
go to 320
c
c permute the results to normal order---done in two stages
c permutation for square factors of n
c
350 np(1) = ks
if (kt.eq.0) go to 440
k = kt + kt + 1
if (m.lt.k) k = k - 1
j = 1
np(k+1) = jc
360 np(j+1) = np(j)/nfac(j)
np(k) = np(k+1)*nfac(j)
j = j + 1
k = k - 1
if (j.lt.k) go to 360
k3 = np(k+1)
kspan = np(2)
kk = jc + 1
k2 = kspan + 1
j = 1
if (n.ne.ntot) go to 400
c
c permutation for single-variate transform (optional code)
c
370 ak = a(kk)
a(kk) = a(k2)
a(k2) = ak
bk = b(kk)
b(kk) = b(k2)
b(k2) = bk
kk = kk + inc
k2 = kspan + k2
if (k2.lt.ks) go to 370
380 k2 = k2 - np(j)
j = j + 1
k2 = np(j+1) + k2
if (k2.gt.np(j)) go to 380
j = 1
390 if (kk.lt.k2) go to 370
kk = kk + inc
k2 = kspan + k2
if (k2.lt.ks) go to 390
if (kk.lt.ks) go to 380
jc = k3
go to 440
c
c permutation for multivariate transform
c
400 k = kk + jc
410 ak = a(kk)
a(kk) = a(k2)
a(k2) = ak
bk = b(kk)
b(kk) = b(k2)
b(k2) = bk
kk = kk + inc
k2 = k2 + inc
if (kk.lt.k) go to 410
kk = kk + ks - jc
k2 = k2 + ks - jc
if (kk.lt.nt) go to 400
k2 = k2 - nt + kspan
kk = kk - nt + jc
if (k2.lt.ks) go to 400
420 k2 = k2 - np(j)
j = j + 1
k2 = np(j+1) + k2
if (k2.gt.np(j)) go to 420
j = 1
430 if (kk.lt.k2) go to 400
kk = kk + jc
k2 = kspan + k2
if (k2.lt.ks) go to 430
if (kk.lt.ks) go to 420
jc = k3
440 if (2*kt+1.ge.m) return
kspnn = np(kt+1)
c
c permutation for square-free factors of n
c
j = m - kt
nfac(j+1) = 1
450 nfac(j) = nfac(j)*nfac(j+1)
j = j - 1
if (j.ne.kt) go to 450
kt = kt + 1
nn = nfac(kt) - 1
jj = 0
j = 0
go to 480
460 jj = jj - k2
k2 = kk
k = k + 1
kk = nfac(k)
470 jj = kk + jj
if (jj.ge.k2) go to 460
np(j) = jj
480 k2 = nfac(kt)
k = kt + 1
kk = nfac(k)
j = j + 1
if (j.le.nn) go to 470
c
c determine the permutation cycles of length greater than 1
c
j = 0
go to 500
490 k = kk
kk = np(k)
np(k) = -kk
if (kk.ne.j) go to 490
k3 = kk
500 j = j + 1
kk = np(j)
if (kk.lt.0) go to 500
if (kk.ne.j) go to 490
np(j) = -j
if (j.ne.nn) go to 500
maxf = inc*maxf
c
c reorder a and b, following the permutation cycles
c
go to 570
510 j = j - 1
if (np(j).lt.0) go to 510
jj = jc
520 kspan = jj
if (jj.gt.maxf) kspan = maxf
jj = jj - kspan
k = np(j)
kk = jc*k + i + jj
k1 = kk + kspan
k2 = 0
530 k2 = k2 + 1
wt(k2) = a(k1)
bt(k2) = b(k1)
k1 = k1 - inc
if (k1.ne.kk) go to 530
540 k1 = kk + kspan
k2 = k1 - jc*(k+np(k))
k = -np(k)
550 a(k1) = a(k2)
b(k1) = b(k2)
k1 = k1 - inc
k2 = k2 - inc
if (k1.ne.kk) go to 550
kk = k2
if (k.ne.j) go to 540
k1 = kk + kspan
k2 = 0
560 k2 = k2 + 1
a(k1) = wt(k2)
b(k1) = bt(k2)
k1 = k1 - inc
if (k1.ne.kk) go to 560
if (jj.ne.0) go to 520
if (j.ne.1) go to 510
570 j = k3 + 1
nt = nt - kspnn
i = nt - inc + 1
if (nt.ge.0) go to 510
return
end
|