File: elem_common.h

package info (click to toggle)
scilab 2024.1.0%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 381,880 kB
  • sloc: xml: 765,066; ansic: 285,813; cpp: 264,881; java: 172,629; fortran: 91,526; ml: 23,103; tcl: 16,853; makefile: 9,722; sh: 7,027; f90: 6,437; lex: 1,656; perl: 1,566; yacc: 1,308; php: 690; cs: 613; javascript: 50
file content (144 lines) | stat: -rw-r--r-- 9,122 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
*  Scilab ( https://www.scilab.org/ ) - This file is part of Scilab
*  Copyright (C) 2008-2008 - DIGITEO - Antoine ELIAS
*
 * Copyright (C) 2012 - 2016 - Scilab Enterprises
 *
 * This file is hereby licensed under the terms of the GNU GPL v2.0,
 * pursuant to article 5.3.4 of the CeCILL v.2.1.
 * This file was originally licensed under the terms of the CeCILL v2.1,
 * and continues to be available under such terms.
 * For more information, see the COPYING file which you should have received
 * along with this program.
*
*/

#ifndef __COMMON_H__
#define __COMMON_H__

#include "core_math.h"

#include "abs.h"
#include "cos.h"
#include "exp.h"
#include "log.h"
#include "pythag.h"
#include "sin.h"
#include "tan.h"
#include "sqrt.h"
#include "sign.h"

/*
'E' or 'e',   DLAMCH := eps ( relative machine precision )
'S' or 's ,   DLAMCH := sfmin ( safe minimum, such that 1/sfmin does not overflow )
'B' or 'b',   DLAMCH := base ( base of the machine )
'P' or 'p',   DLAMCH := eps*base ( eps*base )
'N' or 'n',   DLAMCH := t ( number of (base) digits in the mantissa )
'R' or 'r',   DLAMCH := rnd ( 1.0 when rounding occurs in addition, 0.0 otherwis )
'M' or 'm',   DLAMCH := emin ( minimum exponent before (gradual) underflow )
'U' or 'u',   DLAMCH := rmin ( underflow threshold - base**(emin-1) )
'L' or 'l',   DLAMCH := emax ( largest exponent before overflow )
'O' or 'o',   DLAMCH := rmax ( overflow threshold  - (base**emax)*(1-eps) )
*/

#include <stdlib.h>
#include "machine.h"

#include "doublecomplex.h"
#include "numericconstants_interface.h"

#ifdef __cplusplus
#define isRealZero(x)						(fabs(static_cast<double>(x)) <= nc_eps())
#define ZeroIsZero(x)						(fabs(static_cast<double>(x)) <= nc_eps() ? 0 : static_cast<double>(x))
#else
#define isZero(x)							(fabs((double)x) <= nc_eps())
#define ZeroIsZero(x)						(fabs((double)x) <= nc_eps() ? 0 : (double)x)
#endif

#define getUnderflowThreshold()				nc_double_min()
#define getOverflowThreshold()				nc_double_max()
#define isEqual(x,y)						fabs((double)x - (double)y) <= nc_eps()

extern double C2F(dlamch) (const char *_pszCommand, unsigned long int);
extern double C2F(logp1) (double *_pdblVal);

// dger   performs the rank 1 operation
extern int C2F(dger) (int *M, int *N, double* alpha, double* DX, int* incx, double* DY, int* incy,  double *DA, int *lda);
extern int C2F(dgemm) (char *_pstTransA, char *_pstTransB, int *_piN, int *_piM, int *_piK, double *_pdblAlpha, double *_pdblA, int *_piLdA,
                       double *_pdblB, int *_piLdB, double *_pdblBeta, double *_pdblC, int *_piLdC);
extern int C2F(zgemm) (char *_pstTransA, char *_pstTransB, int *_piN, int *_piM, int *_piK, double *_pdblAlpha, double *_pdblA, int *_piLdA,
                       double *_pdblB, int *_piLdB, double *_pdblBeta, double *_pdblC, int *_piLdC);
extern int C2F(dswap) (int *_piSize, double *_pdblX, int *_piIncX, double *_pdblY, int *_piIncY);
extern double C2F(dasum) (int *_iSize, double *_pdbl, int *_iInc);
extern int C2F(dcopy) (int *_iSize, double *_pdblSrc, int *_piIncSrc, double *_pdblDest, int *_piDest);
extern int C2F(dscal) (int *_iSize, double *_pdblVal, double *_pdblDest, int *_iInc);
extern int C2F(zscal) (int *_iSize, doublecomplex * _pdblVal, doublecomplex * _pdblDest, int *_iInc);
extern int C2F(dset) (int *_iSize, double *_pdblVal, double *_pdblDest, int *_iInc);
extern double C2F(dlange) (char *_pstNorm, int *_piM, int *_piN, double *_pdblA, int *_piLdA, double *_pdblWork);
extern int C2F(dlacpy) (char *_pstUplo, int *piM, int *_piN, double *_pdblA, int *_piLdA, double *_pdblB, int *_piLdB);
extern int C2F(dtrcon) (char *_pstNORM, char*uplo, char *diag, int *_piN, double *_pdblA, int *_piLDA, double *_pdblRCOND, double *_pdblWORK,
                        int *_piIWORK, int *_piINFO);
extern int C2F(dgecon) (char *_pstNORM, int *_piN, double *_pdblA, int *_piLDA, double *_pdblANORM, double *_pdblRCOND, double *_pdblWORK,
                        int *_piIWORK, int *_piINFO);
extern int C2F(dgelsy1) (int *_piM, int *_piN, int *_piNRHS, double *_pdblA, int *_piLDA, double *_pdblB, int *_piLDB, int *_piJPVT,
                         double *_pdblRCOND, int *_piRANK, double *_pdblWORK, int *_piLWORK, int *_piINFO);
extern double C2F(zlange) (char *_pstNORM, int *_piM, int *_piN, double *_pdblA, int *_piLDA, double *_pdblWORK);
extern int C2F(zlacpy) (char *_pstUPLO, int *_piM, int *_piN, double *_pdblA, int *_piLDA, double *_pdblB, int *_piLDB);
extern void C2F(zgecon) (char *_pstNORM, int *_piN, doublecomplex * _pdblA, int *_piLDA, double *_pdblANORM, double *_pdblRNORM,
                         doublecomplex * _pdblWORK, double *_pdblRWORD, int *_piINFO);
extern int C2F(ztrcon) (char *_pstNORM, char*uplo, char *diag, int *_piN, doublecomplex *_pdblA, int *_piLDA, double *_pdblRCOND, doublecomplex *_pdblWORK,
                                                 double *_pdblRWORD, int *_piINFO);
extern int C2F(zgelsy1) (int *_piM, int *_piN, int *_piNRHS, doublecomplex * pdblA, int *_piLDA, doublecomplex * _pdblB, int *_piLDB, int *_piJPVT,
                         double *_pdblRCOND, int *_piRANK, doublecomplex * _pdblWORK, int *_piLWORK, double *_pdblRWORK, int *_piINFO);
extern double C2F(ddot) (int *_ipSize, double *_pdblVal1, int *_piInc1, double *_pdblVal2, int *_piInc2);
extern void C2F(wmul) (double *ar, double *ai, double *br, double *bi, double *cr, double *ci);
extern void C2F(wdiv) (double *ar, double *ai, double *br, double *bi, double *cr, double *ci);
extern void C2F(dad) (double *a, int *na, int *i1, int *i2, int *j1, int *j2, double *r, int *isw);
extern int C2F(entier) (int *_iSize, double *_pdbl, int *_pi);
extern int C2F(simple) (int *_iSize, double *_pdbl, float *_pf);
extern double C2F(nearfloat) (double*, double*);
extern int C2F(daxpy)(int* N, double* DA, double* DX, int* INCX, double* DY, int* INCY);
extern int C2F(zaxpy)(int* N, doublecomplex* ZA, doublecomplex* ZX, int* INCX, doublecomplex* ZY, int* INCY);
extern int C2F(dsymv)(char* UPLO, int* N, double* ALPHA, double* A, int* LDA, double* X, int* INCX, double* BETA, double* Y, int* INCY);

// dgemv performs matrix-vector operations
extern int C2F(dgemv) (char* trans, int* m, int* n, double* alpha, double* A, int* lda,
                       double* x, int* incx, double* beta, double* y, int* incy);
extern int C2F(zgemv) (char* trans, int* m, int* n, doublecomplex* alpha, doublecomplex* A,
                       int* lda, doublecomplex* x, int* incx, doublecomplex* beta, doublecomplex* y, int* incy);

// dgetrf computes an LU factorization of a general M by N matrix A (double) using partial pivoting with row interchanges
extern int C2F(dgetrf)(int* m, int* n, double* A, int* lda, int* ipiv, int* info);

// dgetrs solves a linear system using the factors computed by dgetrf
extern int C2F(dgetrs) (char* trans, int* n, int* nrhs, double* A, int *lda, int* ipiv, double* B, int* ldb, int* info);

// dpotrf computes the cholesky factorization of a real symmetric positive definite matrix A
extern int C2F(dpotrf)(char* uplo, int* n, double* A, int* lda, int* info);

// zpotrf computes the cholesky factorization of a real hermitian positive definite matrix A
extern int C2F(zpotrf)(char* uplo, int* n, doublecomplex* A, int* lda, int* info);

// dtrsm solves a triangular linear system
extern int C2F(dtrsm) (char* side, char* uplo, char* trans, char* diag, int* m, int* n, double* alpha, double* A, int* lda, double* B, int* ldb);
// ztrsm solve a triangular linear system
extern int C2F(ztrsm) (char* side, char* uplo, char* trans, char* diag, int* m, int* n, doublecomplex* alpha, doublecomplex* A, int* lda, doublecomplex* B, int* ldb);
// dsyrk does a rank k symmetric update
extern int C2F(dsyrk) (char* uplo, char* trans, int* n, int* k, double* alpha,
                       double* A, int* lda, double* beta, double* B, int* ldb);
// dsyr   performs the symmetric rank 1 operation
extern int C2F(dsyr) (char* uplo, int* n, double* alpha, double *x, int* incx, double* A, int* lda);
// ztrmm multiply by a triangular matrix
extern int C2F(ztrmm) (char* side, char* uplo, char* trans, char* diag, int* m, int* n, doublecomplex* alphac,
                       doublecomplex* A, int* lda, doublecomplex* B, int* ldb);
// ztrmv multiply a vector by a triangular matrix
extern int C2F(ztrmv) (char* uplo, char* trans, char* diag, int* n, doublecomplex* A, int* lda, doublecomplex* x, int* incx);
// dtrmv multiply a vector by a triangular matrix
extern int C2F(dtrmv) (char* uplo, char* trans, char* diag, int* n, double* A, int* lda, double* x, int* incx);
// zgetrs solves a linear system using the factors computed by zgetrf
extern int C2F(zgetrs) (char *_pstTRANS, int *_piN, int *_piNRHS, doublecomplex *_pdblA, int *_piLDA, int *_piIPIV, doublecomplex *_pdblB, int *_piLDB,
                        int *_piINFO);
// zgetrf computes an LU factorization of a general M by N matrix A (complex*16) using partial pivoting with row interchanges
extern int C2F(zgetrf) (int *_piM, int *_piN, doublecomplex *_pdblA, int *_piLDA, int *_piIPIV, int *_piINFO);

#endif /* __COMMON_H__ */