File: car.sci

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (174 lines) | stat: -rw-r--r-- 4,875 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
function demo_car()
  initial=[3;3;0;0]
  final=[0;0;0;0]
  f = gcf() ;
  f.pixmap = 'on' ;
  toolbar(0,'off');
  state=car_solve(initial,final);
  display_car_trajectory(state)
endfunction

function state=car_solve(initial,final)
//
//  CAR PACKING VIA FLATNESS AND FRENET FORMULAS
//
//    explicit computation and visualisation of the motions.
//
//    February 1993
//
// ............................................................
// :         pierre ROUCHON  <rouchon@cas.ensmp.fr>           :
// : Centre Automatique et Systemes, Ecole des Mines de Paris :
// : 60, bd Saint Michel -- 75272 PARIS CEDEX 06, France      :
// :    Telephone: (1) 40 51 91 15 --- Fax: (1) 43 54 18 93   :
// :..........................................................:
//
// initial: initial position [x,y,theta,phi]
// final  :   final position [x,y,theta,phi]
//        theta  : the car angle
//        phi    : the front wheel angle
  
  bigT = 1 ;//basic time interval for one  smooth motion (s)
  bigL = 1 ;// car length (m) 

  // computation of  intermediate configuration 
  x0 = maxi(initial(1),final(2))   ....
       + bigL*abs(tan(initial(3))) ...
       + bigL*abs(tan(final(3))) ...
       + bigL*(abs(initial(2)-final(2))/bigL)^(1/2) ;
  y0 = (initial(2)+final(2))/2 ;
  intermediate=[x0,y0,0,0]'

  // first polynomial curve
  state=[matrix(initial,1,-1);
	 car_polynomial_curve(initial,intermediate,"direct")]
  //
  // second polynomial curve
  state = [ state; 
	    matrix(intermediate,1,-1) 
	    car_polynomial_curve(final,intermediate,"reverse")
	    matrix(final,1,-1)] 
endfunction

function state=car_polynomial_curve(initial,final,orient)

  nbpt = 40 ; //  sampling of motion 
  theta1 = initial(3) ; phi1 = initial(4) ;
  da = initial(1)-final(1)
  
  M = [da^3     da^4     da^5 
       3*da^2   4*da^3   5*da^4
       6*da    12*da^2  20*da^3 ] ;
  
  q = [initial(2)-final(2)
       tan(theta1) 
       tan(phi1)/(bigL*(cos(theta1)^3))] ;
  
  p = inv(M)*q ;
  tau=(0:nbpt)'/nbpt
  phi=tau.*tau.*(3-2*tau) ;
  if orient=='reverse' then
    a = (1-phi)*final(1) + phi*initial(1) ;
  else
    a = (1-phi)*initial(1) + phi*final(1) ;
  end
  da=a-final(1)
  
  f=  final(2)+ p(1).*da^3 +    p(2).*da^4 +    p(3).*da^5 ;
  df  =       3*p(1).*da^2 +  4*p(2).*da^3 +  5*p(3).*da^4 ;
  ddf =       6*p(1).*da   + 12*p(2).*da^2 + 20*p(3).*da^3 ;
  
  k = ddf ./ ((1+df.*df)^(3/2)) ;
  state=[ a   f  atan(df) atan(k*bigL)]
endfunction

function display_car_trajectory(state)
  bigL=1
  set figure_style new;xbasc();xselect()
  a=gca()
  drawlater()
  a.isoview="on"
  a.data_bounds=[mini(state(:,1))-0.5*bigL, mini(state(:,2))-1.5*bigL
		 maxi(state(:,1))+1.5*bigL, maxi(state(:,2))+1.5*bigL]
  rect=matrix(a.data_bounds',-1,1)
  xpoly(rect([1 3 3 1]),rect([2,2,4,4]),'lines',1)
  C=build_car()
  Cinit=[];Cend=[];Cinter=[];
  for k=1:size(C,'*')
    Cinit=[Cinit copy(C(k))];
    Cinter=[Cinter,copy(C(k))];
    Cend=[Cend,copy(C(k))]
  end
  // starting configuration
  draw_car(Cinit,state(1,:))
  // end configuration
  draw_car(Cend,state($,:))
  // intermediate configuration (inversion of velocity)
  draw_car(Cinter,state(ceil(size(state,1)/2),:)) ;
  // trajectory of the linearizing output
  t1=polyline([state(1,1) state(1,2);state(1,1) state(1,2)]) ;
  t1.line_style=2;
  realtimeinit(0.1)
  for i=1:size(state,1)
    realtime(i) 
    drawlater()
    draw_car(C, state(i,:)) 
    t1.data=[t1.data;state(i,1) state(i,2)];
    drawnow()
  end 
  for i=(1:30)+size(state,1),realtime(i),end
  xdel()
endfunction


function C=build_car()
//build the graphic object for the car
// 
  //the car
  hcar=polyline([-2,7,8,8,7,-2,-2;-2,-2,-1,1,2,2,-2]'/6)
  hcar.foreground=2

  // rear wheels
  hwheel1=polyline([[-1 1]/8; [1 1]/6]')
  hwheel1.thickness=2
   
  hwheel2=polyline([[-1 1]/8; -[1 1]/6]')
  hwheel2.thickness=2
  
  // front wheels
  hwheel3=polyline([[7 9]/8;[1 1]/6]')
  hwheel3.thickness=2
  hwheel4=polyline([[7 9]/8;-[1 1]/6]') 
  hwheel4.thickness=2
  //return vector of handle on the objects
  C=[hcar,hwheel1,hwheel2,hwheel3,hwheel4]
endfunction

function draw_car(C,pos)
  drawlater()
  [x,y,theta,phi]=(pos(1),pos(2),pos(3),pos(4))
  bigL=1
  Rc=[cos(theta) sin(theta);-sin(theta) cos(theta)]
  // the car
  xy = [-2,-2;7,-2;8,-1;8,1;7,2;-2,2;-2,-2]/6
  C(1).data=ones(xy)*diag([x;y])+bigL*xy*Rc
  // rear wheels
  xy=[[-1 1]/8; [1 1]/6]'
  C(2).data=ones(xy)*diag([x;y])+bigL*xy*Rc
  xy=[[-1 1]/8; -[1 1]/6]'
  C(3).data=ones(xy)*diag([x;y])+bigL*xy*Rc
  // front wheels
  xy=[(1-cos(phi)/8) (1/6-sin(phi)/8)
      (1+cos(phi)/8) (1/6+sin(phi)/8)]
  C(4).data=ones(xy)*diag([x;y])+bigL*xy*Rc
  xy=[(1-cos(phi)/8) (-1/6-sin(phi)/8)
      (1+cos(phi)/8) (-1/6+sin(phi)/8)]
  C(5).data=ones(xy)*diag([x;y])+bigL*xy*Rc
  drawnow()
  show_pixmap();
endfunction

function h=polyline(xy)
  xpoly(xy(:,1),xy(:,2),'lines')
  h=gce()
endfunction