1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
function demo_car()
initial=[3;3;0;0]
final=[0;0;0;0]
f = gcf() ;
f.pixmap = 'on' ;
toolbar(0,'off');
state=car_solve(initial,final);
display_car_trajectory(state)
endfunction
function state=car_solve(initial,final)
//
// CAR PACKING VIA FLATNESS AND FRENET FORMULAS
//
// explicit computation and visualisation of the motions.
//
// February 1993
//
// ............................................................
// : pierre ROUCHON <rouchon@cas.ensmp.fr> :
// : Centre Automatique et Systemes, Ecole des Mines de Paris :
// : 60, bd Saint Michel -- 75272 PARIS CEDEX 06, France :
// : Telephone: (1) 40 51 91 15 --- Fax: (1) 43 54 18 93 :
// :..........................................................:
//
// initial: initial position [x,y,theta,phi]
// final : final position [x,y,theta,phi]
// theta : the car angle
// phi : the front wheel angle
bigT = 1 ;//basic time interval for one smooth motion (s)
bigL = 1 ;// car length (m)
// computation of intermediate configuration
x0 = maxi(initial(1),final(2)) ....
+ bigL*abs(tan(initial(3))) ...
+ bigL*abs(tan(final(3))) ...
+ bigL*(abs(initial(2)-final(2))/bigL)^(1/2) ;
y0 = (initial(2)+final(2))/2 ;
intermediate=[x0,y0,0,0]'
// first polynomial curve
state=[matrix(initial,1,-1);
car_polynomial_curve(initial,intermediate,"direct")]
//
// second polynomial curve
state = [ state;
matrix(intermediate,1,-1)
car_polynomial_curve(final,intermediate,"reverse")
matrix(final,1,-1)]
endfunction
function state=car_polynomial_curve(initial,final,orient)
nbpt = 40 ; // sampling of motion
theta1 = initial(3) ; phi1 = initial(4) ;
da = initial(1)-final(1)
M = [da^3 da^4 da^5
3*da^2 4*da^3 5*da^4
6*da 12*da^2 20*da^3 ] ;
q = [initial(2)-final(2)
tan(theta1)
tan(phi1)/(bigL*(cos(theta1)^3))] ;
p = inv(M)*q ;
tau=(0:nbpt)'/nbpt
phi=tau.*tau.*(3-2*tau) ;
if orient=='reverse' then
a = (1-phi)*final(1) + phi*initial(1) ;
else
a = (1-phi)*initial(1) + phi*final(1) ;
end
da=a-final(1)
f= final(2)+ p(1).*da^3 + p(2).*da^4 + p(3).*da^5 ;
df = 3*p(1).*da^2 + 4*p(2).*da^3 + 5*p(3).*da^4 ;
ddf = 6*p(1).*da + 12*p(2).*da^2 + 20*p(3).*da^3 ;
k = ddf ./ ((1+df.*df)^(3/2)) ;
state=[ a f atan(df) atan(k*bigL)]
endfunction
function display_car_trajectory(state)
bigL=1
set figure_style new;xbasc();xselect()
a=gca()
drawlater()
a.isoview="on"
a.data_bounds=[mini(state(:,1))-0.5*bigL, mini(state(:,2))-1.5*bigL
maxi(state(:,1))+1.5*bigL, maxi(state(:,2))+1.5*bigL]
rect=matrix(a.data_bounds',-1,1)
xpoly(rect([1 3 3 1]),rect([2,2,4,4]),'lines',1)
C=build_car()
Cinit=[];Cend=[];Cinter=[];
for k=1:size(C,'*')
Cinit=[Cinit copy(C(k))];
Cinter=[Cinter,copy(C(k))];
Cend=[Cend,copy(C(k))]
end
// starting configuration
draw_car(Cinit,state(1,:))
// end configuration
draw_car(Cend,state($,:))
// intermediate configuration (inversion of velocity)
draw_car(Cinter,state(ceil(size(state,1)/2),:)) ;
// trajectory of the linearizing output
t1=polyline([state(1,1) state(1,2);state(1,1) state(1,2)]) ;
t1.line_style=2;
realtimeinit(0.1)
for i=1:size(state,1)
realtime(i)
drawlater()
draw_car(C, state(i,:))
t1.data=[t1.data;state(i,1) state(i,2)];
drawnow()
end
for i=(1:30)+size(state,1),realtime(i),end
xdel()
endfunction
function C=build_car()
//build the graphic object for the car
//
//the car
hcar=polyline([-2,7,8,8,7,-2,-2;-2,-2,-1,1,2,2,-2]'/6)
hcar.foreground=2
// rear wheels
hwheel1=polyline([[-1 1]/8; [1 1]/6]')
hwheel1.thickness=2
hwheel2=polyline([[-1 1]/8; -[1 1]/6]')
hwheel2.thickness=2
// front wheels
hwheel3=polyline([[7 9]/8;[1 1]/6]')
hwheel3.thickness=2
hwheel4=polyline([[7 9]/8;-[1 1]/6]')
hwheel4.thickness=2
//return vector of handle on the objects
C=[hcar,hwheel1,hwheel2,hwheel3,hwheel4]
endfunction
function draw_car(C,pos)
drawlater()
[x,y,theta,phi]=(pos(1),pos(2),pos(3),pos(4))
bigL=1
Rc=[cos(theta) sin(theta);-sin(theta) cos(theta)]
// the car
xy = [-2,-2;7,-2;8,-1;8,1;7,2;-2,2;-2,-2]/6
C(1).data=ones(xy)*diag([x;y])+bigL*xy*Rc
// rear wheels
xy=[[-1 1]/8; [1 1]/6]'
C(2).data=ones(xy)*diag([x;y])+bigL*xy*Rc
xy=[[-1 1]/8; -[1 1]/6]'
C(3).data=ones(xy)*diag([x;y])+bigL*xy*Rc
// front wheels
xy=[(1-cos(phi)/8) (1/6-sin(phi)/8)
(1+cos(phi)/8) (1/6+sin(phi)/8)]
C(4).data=ones(xy)*diag([x;y])+bigL*xy*Rc
xy=[(1-cos(phi)/8) (-1/6-sin(phi)/8)
(1+cos(phi)/8) (-1/6+sin(phi)/8)]
C(5).data=ones(xy)*diag([x;y])+bigL*xy*Rc
drawnow()
show_pixmap();
endfunction
function h=polyline(xy)
xpoly(xy(:,1),xy(:,2),'lines')
h=gce()
endfunction
|