1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
function showinstr(mac)
if type(mac)==11 then
[in,out,txt]=string(mac)
x_message(txt)
end
endfunction
function [X,Y]=field(x,y)
// x and y are two vectors defining a grid
// X and Y are two matrices which gives the grid point coordinates
//-------------------------------------------------------------
// Copyright INRIA
[rx,cx]=size(x);
[ry,cy]=size(y);
if rx<>1, write(%io(2),"x must be a row vector");return;end;
if ry<>1, write(%io(2),"y must be a row vector");return;end;
X=x.*.ones(cy,1);
Y=y'.*.ones(1,cx);
endfunction
function [z]=dup(x,n)
// utility
// x is a vector this function returns [x,x,x,x...] or [x;x;x;x;..]
// depending on x
// Copyright INRIA
[nr,nc]=size(x)
if nr==1 then
y=ones(n,1);
z= x.*.y ;
else
if nc<>1 then
error("dup : x must be a vector");
else
y=ones(1,n);
z= x.*.y ;
end
end
endfunction
function [z] = bezier(p,t)
//comment : Computes a Bezier curves.
//For a test try:
//beziertest; bezier3dtest; nurbstest; beziersurftest; c1test;
//Uses the following functions:
//bezier, bezier3d, nurbs, beziersurface
//endcomment
//reset();
// Evaluate sum p_i B_{i,n}(t) the easy and direct way.
// p must be a k x n+1 matrix (n+1) points, dimension k.
// Copyright INRIA
n=size(p,'c')-1;// i=nonzeros(t~=1);
t1=(1-t); t1z= find(t1==0.0); t1(t1z)= ones(t1z);
T=dup(t./t1,n)';
b=[((1-t')^n),(T.*dup((n-(1:n)+1)./(1:n),size(t,'c')))];
b=cumprod(b,'c');
if (size(t1z,'c')>0); b(t1z,:)= dup([ 0*ones(1,n),1],size(t1z,'c')); end;
z=p*b';
endfunction
function bezier3d (p)
// Shows a 3D Bezier curve and its polygon
// Copyright INRIA
t=linspace(0,1,300);
s=bezier(p,t);
dh=xget("dashes");
xset("dashes",3)
param3d(p(1,:),p(2,:),p(3,:),34,45)
xset("dashes",4);
param3d(s(1,:),s(2,:),s(3,:),34,45,"x@y@z",[0,0])
xset("dashes",dh);
xtitle('A 3d polygon and its Bezier curve');
current_axe = gca();current_axe.title.font_size = 3;
endfunction
function [X,Y,Z]=beziersurface (x,y,z,n)
// Compute a Bezier surface. Return {bx,by,bz}.
// Copyright INRIA
[lhs,rhs]=argn(0);
if rhs <= 3 ; n=20;end
t=linspace(0,1,n);
n=size(x,'r')-1; // i=nonzeros(t~=1);
t1=(1-t); t1z= find(t1==0.0); t1(t1z)= ones(t1z);
T=dup(t./t1,n)';
b1=[((1-t')^n),(T.*dup((n-(1:n)+1)./(1:n),size(t,'c')))];
b1=cumprod(b1,'c');
if (size(t1z,'c')>0);
b1(t1z,:)= dup([ 0*ones(1,n),1],size(t1z,'c'));
end
n=size(x,'c')-1; // i=nonzeros(t~=1);
t1=(1-t); t1z= find(t1==0.0); t1(t1z)= ones(t1z);
T=dup(t./t1,n)';
b2=[((1-t')^n),(T.*dup((n-(1:n)+1)./(1:n),size(t,'c')))];
b2=cumprod(b2,'c');
if (size(t1z,'c')>0);
b2(t1z,:)= dup([ 0*ones(1,n),1],size(t1z,'c'));
end
X=b1*x*b2';Y=b1*y*b2';Z=b1*z*b2';
endfunction
function cplxmap(z,w,varargin)
//cplxmap(z,w,T,A,leg,flags,ebox)
//cplxmap Plot a function of a complex variable.
// cplxmap(z,f(z))
// Copyright INRIA
x = real(z);
y = imag(z);
u = real(w);
v = imag(w);
M = max(u);
m = min(u);
s = ones(size(z));
//mesh(x,y,m*s,blue*s);
//hold on
[X,Y,U]=nf3d(x,y,u);
[X,Y,V]=nf3d(x,y,v);
Colors = sum(V,'r');
Colors = Colors - min(Colors);
Colors = 32*Colors/max(Colors);
plot3d1(X,Y,list(U,Colors),varargin(:))
endfunction
function cplxroot(n,m,varargin)
//cplxroot(n,m,T,A,leg,flags,ebox)
//CPLXROOT Riemann surface for the n-th root.
// CPLXROOT(n) renders the Riemann surface for the n-th root.
// CPLXROOT, by itself, renders the Riemann surface for the cube root.
// CPLXROOT(n,m) uses an m-by-m grid. Default m = 20.
// Use polar coordinates, (r,theta).
// Cover the unit disc n times.
// Copyright INRIA
[lhs,rhs]=argn(0)
if rhs < 1, n = 3; end
if rhs < 2, m = 20; end
r = (0:m)'/m;
theta = - %pi*(-n*m:n*m)/m;
z = r * exp(%i*theta);
s = r.^(1/n) * exp(%i*theta/n);
cplxmap(z,s,varargin(:))
endfunction
|