File: surfaces.sci

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (97 lines) | stat: -rw-r--r-- 2,846 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
function hole3d()
    // Holes in surfaces using %inf 
    // Copyright INRIA
    t=linspace(-%pi,%pi,40);z=sin(t)'*cos(t);
    z1=find(abs(z) > 0.5);
    z(z1)=%inf*z1;
    plot3d1(t,t,z);
function hole3d1()
// Holes in surfaces using %inf 
     deff('[x,y,z]=sph(alp,tet)',['x=r*cos(alp).*cos(tet)+orig(1)*ones(tet)';
     'y=r*cos(alp).*sin(tet)+orig(2)*ones(tet)';
     'z=r*sin(alp)+orig(3)*ones(tet)']);
     r=1;orig=[0 0 0];
     x=linspace(-%pi/2,%pi/2,40);y=linspace(0,%pi*2,20); 
     x(5:8)=%inf*ones(5:8);  
     x(30:35)=%inf*ones(30:35); 
     [x1,y1,z1]=eval3dp(sph,x,y);
     plot3d1(x1,y1,z1)      
function sphere
     u = linspace(-%pi/2,%pi/2,40);
     v = linspace(0,2*%pi,20);
     x= cos(u)'*cos(v);
     y= cos(u)'*sin(v);
     z= sin(u)'*ones(v);
     plot3d2(x,y,z);
function shell
     u = linspace(0,2*%pi,40);
     v = linspace(0,2*%pi,20);
     x= (cos(u).*u)'*(1+cos(v)/2);
     y= (u/2)'*sin(v);
     z= (sin(u).*u)'*(1+cos(v)/2);
     plot3d2(x,y,z);
function spiral
     [r,a]=field(0:0.1:1,0:%pi/8:6*%pi);
     z=a/8;
     x=r.*cos(a).*(1-a/20);
     y=r.*sin(a).*(1-a/20);
     z=z-1.5;
     plot3d2(x,y,z); 
function rings
     rr=0.2;
     t=linspace(0,2*%pi,10);
     s=linspace(0,2*%pi,41); n=length(s);
     r=dup(1+cos(t)*rr,n)'; m=length(t);
     x=dup(cos(s),m).*r; y=dup(sin(s),m).*r;
     z=dup(sin(t)*rr,n)';
     X=[x;(x+1.3);(x-1.3)];
     Y=[y;-z;-z];
     Z=[z;y;y];
     plot3d2(X,Y,Z,[m,2*m]);
function torus
// some torus type bodies.
     x=linspace(0,2*%pi,40);
     y=linspace(0,2*%pi,20)';
// a torus with a thick and a thin side.
     factor=1.5+cos(y)*(cos(x)/2+0.6);
     X=factor*diag(cos(x));
     Y=factor*diag(sin(x));
     Z=sin(y)*(cos(x)/2+0.6);
     plot3d2(X,Y,Z);
function torus1      
// a deformed torus
     x=linspace(0,2*%pi,40);
     y=linspace(0,2*%pi,20)';
     factor=1.5+cos(y);
     X=factor*cos(x);
     Y=factor*sin(x);
     Z=sin(y)*ones(x)+ ones(y)*cos(2*x);
     plot3d2(X,Y,Z);
function moebius
// the Moebius band
     t=linspace(-1,1,20)';
     x=linspace(0,%pi,40);
     factor=2+ t*cos(x);
     X=factor*diag(cos(2*x));
     Y=factor*diag(sin(2*x));
     Z=t*sin(x);
     plot3d2(X,Y,Z);
function tube(nn)
// some tube like bodies.
     x=linspace(0,2*%pi,nn);
     //  atomic modell or so.
     y=0.1+[sin(linspace(0,%pi,15)),1.5*sin(linspace(0,%pi,10)),sin(linspace(0,%pi,15))];
     cosphi=dup(cos(x),length(y));
     sinphi=dup(sin(x),length(y));
     f=dup(y',length(x));
     x1=f.*cosphi;     y1=f.*sinphi;
     z=dup(linspace(-2,2,prod(size(y)))',prod(size(x)));
     plot3d2(x1,y1,z,-1,35,70);
function bh(nn)
// a black hole
     x=linspace(0,2*%pi,nn);
     t=linspace(0,1,20);
     cosphi=dup(cos(x),length(t));
     sinphi=dup(sin(x),length(t));
     f=dup((t.*t+0.2)',length(x));
      plot3d2(f.*cosphi,f.*sinphi,dup(t'.*2-1,length(x)));