1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
|
function demo_isoSurf()
demo_help demo_isoSurf
//display an isosurface with Gouraud shaded triangles
//cd ENRICO;
//exec loader.sce
//cd ../
f = gcf() ;
SetPosition();
f.color_map = graycolormap(1024);
drawlater();
nx=20; ny=20; nz=20; s=hypermat([nx,ny,nz]);
x=linspace(-4.5,4.5,nx); xq=x'*ones(1,ny);
y=linspace(-4.5,4.5,ny); yq=ones(nx,1)*y;
z=linspace(-4.5,4.5,nz);
for i=1:nz
s(:,:,i)=1../((xq-2).^2+yq.^2+(z(i)-2)^2)+1../((xq+2).^2+yq.^2+(z(i)+2)^2);
end;
[xx,yy,zz]=isosurf3d(x,y,z,-s,-.18);
c= shadecomp(xx,yy,zz,[1,0,1],3,2);
xbasc();
//xtitle('Isosurface resulting of the attraction of two spheres');
plot3d(xx,yy,list(zz,c*(xget('lastpattern')-1)+1))
e = gce();
e.color_mode = 0 ;
e.color_flag = 3;
//drawnow();
f = gcf();
f.pixmap='on';
a = gca();
a.isoview = 'on';
t = a.title ;
t.text = 'Isosurface resulting of the attraction of two spheres' ;
t.font_size = 5 ;
drawnow();
for i=1:45
a.rotation_angles = a.rotation_angles + [8,0] ;
show_pixmap() ;
end;
xdel();
nc=30; setcmap([1 2 3 4 6 7],nc)
drawlater();
// generate various 3d objects
[xx1,yy1,zz1]=sphere(rand(2,3),0.1,12);
[xx2,yy2,zz2]=sphere(rand(2,3),0.05,12);
s=(0:0.02:1)';
[xx3,yy3,zz3]=spaghetti(cos(4*%pi*s)/4+s,-sin(4*%pi*s)/4,s);
// calculate their shading
l=[2 0 3];
c1=shadecomp(xx1,yy1,zz1,l,2,2);
c2=shadecomp(xx2,yy2,zz2,l,2,2);
c3=shadecomp(xx3,yy3,zz3,l,2,2);
// group them and plot them (each in a different shade)
data=list(xx1,yy1,zz1,c1,2,xx2,yy2,zz2,c2,6,xx3,yy3,zz3,c3,3);
xbasc();
//xtitle('Shaded 3d objects of different colors') ;
oplot3d(data,nc*ones(1,5),45,80)
f = gcf();
SetPosition();
f.pixmap='on';
a = gca();
a.isoview = 'on';
t = a.title ;
t.text = 'Shaded 3D objects of different colors' ;
t.font_size = 5 ;
drawnow();
for i=1:180
a.rotation_angles(2) = a.rotation_angles(2) + 2 ;
show_pixmap() ;
end;
endfunction
function [xx,yy,zz]=isosurf3d(x,y,z,s,s0)
//
// xx,yy,zz= (nf,3) facelet vertices
// s= real hypermat([length(x),length(y),length(z)])
// s0 scalar
//
// hexaedral FEM syntax:
// [xx,yy,zz]=isosurf3d(dcorvg,kvert,field,f0)
//
// dcorvg=(nvert,3) coordinates of the vertices of the cells
// kvert=(ncells,8) list of the vertices of each cell (in a proper order)
// field=(nvert,1) values of the scalar field at the vertex points
// f0 scalar
//
// example: see the demo below.
//
// Plot with:
// xbasc(); plot3d1({xx;xx(1,:)},{yy;yy(1,:)},{zz;zz(1,:)})
// or
// xbasc(); shadesurf(xx,yy,zz)
//
// note: this implementation is rather slow, surely due to the
// nested loops and hypermat operations, which I don't know
// how to vectorize more readably with scilab syntax (in
// principle the algorithm is completely parallelizable).
// Timings are data dependent, as the work depends on
// the number of facelets found.
//t=0
[lhs,rhs]=argn(0);
if rhs==0 then
//demo
disp "demo of isosurf3d(x,y,z,s,s0)"
disp " "
democomm=[
" nx=20; ny=20; nz=20; s=hypermat([nx,ny,nz]);"
" x=linspace(-4.5,4.5,nx); xq=x''*ones(1,ny);"
" y=linspace(-4.5,4.5,ny); yq=ones(nx,1)*y;"
" z=linspace(-4.5,4.5,nz);"
" for i=1:nz; s(:,:,i)=1../((xq-2).^2+yq.^2+(z(i)-2)^2)+"+..
"1../((xq+2).^2+yq.^2+(z(i)+2)^2); end"
" timer();[xx,yy,zz]=isosurf3d(x,y,z,-s,-.18); t=timer();"
]
write(%io(2),democomm); execstr(democomm)
// the -0.2 surface gives a good example of the saddle point hole, btw
aa=string(size(xx,2))+" triangles, "+string(t)+" sec --> "+..
string(size(xx,2)/t)+" triang./sec"
disp " xbasc(); shadesurf(xx,yy,zz,1,0,60,60,''x@y@z'',[1 6 4])"
xbasc(); shadesurf(xx,yy,zz,1,0,60,60,'x@y@z',[1 6 4])
xx=aa;
return
end;
if rhs==2 & type(x)==17 then
s=x; s0=y; nx=size(s,1); ny=size(s,2); nz=size(s,3);
x=1:nx; y=1:ny; z=1:nz;
end
if exists('s','local') & type(s)==17 then
datastruct='h';
nx=size(s,1); ny=size(s,2); nz=size(s,3);
x=matrix(x,1,size(x,'*')); y=matrix(y,1,size(y,'*'));
z=matrix(z,1,size(z,'*'));
if length(x)<nx | length(y)<ny | length(z)<nz then
disp 'check the dimensions of the arguments!'; return
end
else
datastruct='c';
dcorvg=x; kvert=y; field=z; f0=s;
nvert=size(dcorvg,1); ncell=size(kvert,1)
if size(field)<>[nvert,1] then
disp 'wrong dimensions of the scalar field!'; return
end
end
// Now, we have to generate a set of facelets which approximate
// the isosurface sought. My approach is to scan the hypermatrix
// cell by cell, and a) to identify the pattern of vertices > and
// < s0 (there are 23 possible patterns, which can appear in one
// of 48 possible orientations), then b) to generate a set of
// triangular facelets which represent the isosurface inside the cell.
// Ideally, the function inside the cell would be better
// approximated by shape functions. Shape functions evaluating
// to 1 in one vertex and to 0 in the other 7 would be of higher
// than linear order, and their isosurfacelets wouldn't be
// plane. My (to some extent arbitrary) approximation as
// triangular facelets whose vertices are the linear solutions
// along the sides of the cube, should at least be easier.
// I've found this method to work almost always, the only
// exception being that it leaves a hole in some 2-cell saddle
// points (of type [[0 1;1 0],[1 0;0 1]]). Treating that would
// require to consider couples of adjacent cells, which is more
// complicate. Alternative approaches would of course be possible
// (e.g., only rectangles parallel to the coordinate planes
// on the dual lattice,...).
//
// 8----7
// /| /|
// 5----6 | reference order of vertices in the base
// | 4--|-3 cell
// |/ |/
// 1----2
//
//the following is obtained with [pp,par]=cubeperm() below,
// and snippets like
//
//for i=1:48; write(%io(2),string(pp(i,1))+' '+string(pp(i,2))+' '+..
// string(pp(i,3))+' '+string(pp(i,4))+' '+..
// string(pp(i,5))+' '+string(pp(i,6))+' '+..
// string(pp(i,7))+' '+string(pp(i,8))+'; ..' ); end
// time savings are minimal, but one never knows if they don't turn
// out useful
pp=[8 7 6 5 4 3 2 1; 8 7 3 4 5 6 2 1; 8 5 6 7 4 1 2 3; ..
8 5 1 4 7 6 2 3; 8 4 3 7 5 1 2 6; 8 4 1 5 7 3 2 6; ..
7 8 5 6 3 4 1 2; 7 8 4 3 6 5 1 2; 7 6 5 8 3 2 1 4; ..
7 6 2 3 8 5 1 4; 7 3 4 8 6 2 1 5; 7 3 2 6 8 4 1 5; ..
6 7 8 5 2 3 4 1; 6 7 3 2 5 8 4 1; 6 5 8 7 2 1 4 3; ..
6 5 1 2 7 8 4 3; 6 2 3 7 5 1 4 8; 6 2 1 5 7 3 4 8; ..
5 8 7 6 1 4 3 2; 5 8 4 1 6 7 3 2; 5 6 7 8 1 2 3 4; ..
5 6 2 1 8 7 3 4; 5 1 4 8 6 2 3 7; 5 1 2 6 8 4 3 7; ..
4 8 7 3 1 5 6 2; 4 8 5 1 3 7 6 2; 4 3 7 8 1 2 6 5; ..
4 3 2 1 8 7 6 5; 4 1 5 8 3 2 6 7; 4 1 2 3 8 5 6 7; ..
3 7 8 4 2 6 5 1; 3 7 6 2 4 8 5 1; 3 4 8 7 2 1 5 6; ..
3 4 1 2 7 8 5 6; 3 2 6 7 4 1 5 8; 3 2 1 4 7 6 5 8; ..
2 6 7 3 1 5 8 4; 2 6 5 1 3 7 8 4; 2 3 7 6 1 4 8 5; ..
2 3 4 1 6 7 8 5; 2 1 5 6 3 4 8 7; 2 1 4 3 6 5 8 7; ..
1 5 8 4 2 6 7 3; 1 5 6 2 4 8 7 3; 1 4 8 5 2 3 7 6; ..
1 4 3 2 5 8 7 6; 1 2 6 5 4 3 7 8; 1 2 3 4 5 6 7 8];
ppar=[1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 ..
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 ..
1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1];
// "parity" of the permutation of 1:8 above. This is important
// to discriminate the inside and the outside of the isosurface element
[ss,ppinv]=sort(-pp,'c');
// this takes up a negligible time, it's not worth to write
// also ppinv as data
//// base patterns of 0 and 1 on the vertices
//b=zeros(23,8); nft=zeros(23);
//b(1,:)= [0 0 0 0 0 0 0 0]; nft(1)=0; // 0 t
//b(2,:)= [1 0 0 0 0 0 0 0]; nft(2)=1; // 1 t
//b(3,:)= [1 1 0 0 0 0 0 0]; nft(3)=2; // 2 t
//b(4,:)= [1 0 1 0 0 0 0 0]; nft(4)=2; // 2 t
//b(5,:)= [1 1 1 0 0 0 0 0]; nft(5)=3; // 3 t
//b(6,:)= [1 0 0 0 0 0 1 0]; nft(6)=2; // 2 t
//b(7,:)= [1 1 0 0 0 0 1 0]; nft(7)=3; // 3 t
//b(8,:)= [1 0 1 0 0 0 0 1]; nft(8)=3; // 3 t
//b(9,:)= [1 1 1 1 0 0 0 0]; nft(9)=2; // 2 t
//b(10,:)=[1 1 0 0 0 0 1 1]; nft(10)=4; // 4 t
//b(11,:)=[1 0 1 0 1 0 1 0]; nft(11)=4; // 4 t
//b(12,:)=[1 0 1 0 0 1 0 1]; nft(12)=4; // 4 t
//b(13,:)=[1 1 1 0 1 0 0 0]; nft(13)=4; // 4 t
//b(14,:)=[1 1 1 0 0 1 0 0]; nft(14)=4; // 4 t
//b(15,:)=[1 1 1 0 0 0 0 1]; nft(15)=4; // 4 t
//b(16:23,:)=abs(1-b(8:-1:1,:)); nft(16:23)=nft(8:-1:1);
//bb=b==1;
//// now that patterns are inlined as data, the array b isn't
//// be needed anymore
nft=[0 1 2 2 3 2 3 3 2 4 4 4 4 4 4 3 3 2 3 2 2 1 0]
// number of triangles for each of the 23 basic patterns
//bp=zeros(23*48,8)==1;
//for l=1:23; bp(l:23:$,:)=matrix(bb(l,pp),48,8); end;
//bp1=bp(:,1); bp2=bp(:,2); bp3=bp(:,3); bp4=bp(:,4);
//bp5=bp(:,5); bp6=bp(:,6); bp7=bp(:,7); bp8=bp(:,8);
//// these bp1..bp8 make up the columns of the matrix of
//// all patterns permuted in all possible ways
// definition of the triangular facelets for each pattern:
// (all but full cell/void cell, which are skipped)
// The entries of vtrian identify, for each triangle, the
// three sides of the cell on which a vertex lies. Each of
// these sides is identified by the couple of vertices of the
// cell among which it runs. When the pattern requires less
// than 4 triangles, the extra entries of vtrian are ones.
// vtrian=ones(45,6*4);
// for l=-23:23
// nt=0
// select abs(l)
// case 2 then
// vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,1,5]; nt=nt+1 ,
// case 3 then,
// vtrian(l+23,6*nt+(1:6)) = [1,5,2,3,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [1,5,2,6,2,3]; nt=nt+1 ,
// case 4 then,
// vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,1,5]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [3,7,3,4,2,3]; nt=nt+1 ,
// case 5 then,
// vtrian(l+23,6*nt+(1:6)) = [1,4,1,5,2,6]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [1,4,2,6,3,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [3,7,3,4,2,6]; nt=nt+1 ,
// case 6 then
// vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,1,5]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [6,7,7,8,3,7]; nt=nt+1 ,
// case 7 then,
// vtrian(l+23,6*nt+(1:6)) = [1,5,2,3,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [1,5,2,6,2,3]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [6,7,7,8,3,7]; nt=nt+1 ,
// case 8 then,
// vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,1,5]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [3,7,3,4,2,3]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [5,8,7,8,4,8]; nt=nt+1 ,
// case 9 then,
// vtrian(l+23,6*nt+(1:6)) = [1,5,2,6,3,7]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [1,5,3,7,4,8]; nt=nt+1 ,
// case 10 then,
// vtrian(l+23,6*nt+(1:6)) = [1,5,2,3,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [1,5,2,6,2,3]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [4,8,6,7,5,8]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [6,7,4,8,3,7]; nt=nt+1 ,
// case 11 then,
// vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,5,6]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [1,4,5,8,5,6]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [2,3,7,8,3,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [2,3,6,7,7,8]; nt=nt+1 ,
// case 12 then,
// vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,1,5]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [3,7,3,4,2,3]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [4,8,7,8,5,8]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [2,6,5,6,6,7]; nt=nt+1 ,
// case 13 then,
// vtrian(l+23,6*nt+(1:6)) = [1,4,5,8,5,6]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [5,6,2,6,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [2,6,3,4,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [2,6,3,7,3,4]; nt=nt+1 ,
// case 14 then,
// vtrian(l+23,6*nt+(1:6)) = [1,5,5,6,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [5,6,3,4,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [5,6,6,7,3,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [3,4,6,7,3,7]; nt=nt+1 ,
// case 15 then,
// vtrian(l+23,6*nt+(1:6)) = [1,4,1,5,2,6]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [1,4,2,6,3,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [4,8,7,8,5,8]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [2,6,3,7,3,4]; nt=nt+1 ,
// case 16 then,
// vtrian(l+23,6*nt+(1:6)) = [1,2,1,5,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [3,4,3,7,2,3]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [4,8,7,8,5,8]; nt=nt+1 ,
// case 17 then,
// vtrian(l+23,6*nt+(1:6)) = [2,3,1,5,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [1,5,2,6,2,3]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [3,7,7,8,6,7]; nt=nt+1 ,
// case 18 then
// vtrian(l+23,6*nt+(1:6)) = [1,2,1,5,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [3,7,7,8,6,7]; nt=nt+1 ,
// case 19 then,
// vtrian(l+23,6*nt+(1:6)) = [1,4,2,6,1,5]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [1,4,3,4,2,6]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [3,4,3,7,2,6]; nt=nt+1 ,
// case 20 then,
// vtrian(l+23,6*nt+(1:6)) = [1,2,1,5,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [3,4,3,7,2,3]; nt=nt+1 ,
// case 21 then,
// vtrian(l+23,6*nt+(1:6)) = [2,3,1,5,1,4]; nt=nt+1 ,
// vtrian(l+23,6*nt+(1:6)) = [2,3,2,6,1,5]; nt=nt+1 ,
// case 22 then
// vtrian(l+23,6*nt+(1:6)) = [1,2,1,5,1,4]; nt=nt+1 ,
// end
// // switch the order of vertices if the parity of the transformation was
// // negative - this way the 'upper' of any facelet points consistently
// // in the direction where the function increases
// if l<0 & l>-23 then
// aa=vtrian(l+23,[1,2,7,8,13,14,19,20]);
// vtrian(l+23,[1,2,7,8,13,14,19,20])=...
// vtrian(l+23,[5,6,11,12,17,18,23,24]);
// vtrian(l+23,[5,6,11,12,17,18,23,24])=aa
// end
// end
// to produce the output for the inlining
// for i=1:45;printf('%i ',vtrian(i,:)');end
vtrian = [
1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 2 3 1 5 2 6 2 3 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 1 2 2 3 3 7 3 4 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 2 6 1 4 2 6 3 4 1 4 2 6 3 7 3 4 1 4 1 5 1 2;
1 4 1 5 1 2 6 7 7 8 3 7 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 2 3 2 3 2 6 1 5 6 7 7 8 3 7 1 4 1 5 1 2;
1 4 1 5 1 2 2 3 3 7 3 4 5 8 7 8 4 8 1 4 1 5 1 2;
2 6 1 5 1 4 3 4 2 6 1 4 5 8 7 8 4 8 3 4 3 7 2 6;
1 4 5 6 1 5 1 4 3 4 5 6 3 4 6 7 5 6 3 7 6 7 3 4;
5 6 5 8 1 4 1 4 2 6 5 6 1 4 3 4 2 6 3 4 3 7 2 6;
1 5 1 4 1 2 2 3 3 4 3 7 5 8 7 8 4 8 6 7 5 6 2 6;
5 6 1 4 1 2 5 6 5 8 1 4 3 4 7 8 2 3 7 8 6 7 2 3;
1 4 2 3 1 5 2 3 2 6 1 5 5 8 6 7 4 8 3 7 4 8 6 7;
3 7 2 6 1 5 4 8 3 7 1 5 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 1 4 1 2 2 3 3 4 3 7 4 8 7 8 5 8 1 4 1 5 1 2;
1 4 2 3 1 5 2 3 2 6 1 5 3 7 7 8 6 7 1 4 1 5 1 2;
1 5 1 4 1 2 3 7 7 8 6 7 1 4 1 5 1 2 1 4 1 5 1 2;
2 6 1 5 1 4 3 4 2 6 1 4 2 6 3 4 3 7 1 4 1 5 1 2;
1 5 1 4 1 2 2 3 3 4 3 7 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 2 3 1 5 2 3 2 6 1 5 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 1 4 1 2 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 2 1 4 1 5 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 2 3 1 4 1 5 2 6 2 3 1 4 1 5 1 2 1 4 1 5 1 2;
1 2 1 4 1 5 3 7 3 4 2 3 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 2 6 1 4 2 6 3 4 3 7 3 4 2 6 1 4 1 5 1 2;
1 2 1 4 1 5 6 7 7 8 3 7 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 2 3 1 4 1 5 2 6 2 3 6 7 7 8 3 7 1 4 1 5 1 2;
1 2 1 4 1 5 3 7 3 4 2 3 5 8 7 8 4 8 1 4 1 5 1 2;
1 5 2 6 3 7 1 5 3 7 4 8 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 2 3 1 4 1 5 2 6 2 3 4 8 6 7 5 8 6 7 4 8 3 7;
1 2 1 4 5 6 1 4 5 8 5 6 2 3 7 8 3 4 2 3 6 7 7 8;
1 2 1 4 1 5 3 7 3 4 2 3 4 8 7 8 5 8 2 6 5 6 6 7;
1 4 5 8 5 6 5 6 2 6 1 4 2 6 3 4 1 4 2 6 3 7 3 4;
1 5 5 6 1 4 5 6 3 4 1 4 5 6 6 7 3 4 3 4 6 7 3 7;
1 4 1 5 2 6 1 4 2 6 3 4 4 8 7 8 5 8 2 6 3 7 3 4;
1 2 1 5 1 4 3 4 3 7 2 3 4 8 7 8 5 8 1 4 1 5 1 2;
2 3 1 5 1 4 1 5 2 6 2 3 3 7 7 8 6 7 1 4 1 5 1 2;
1 2 1 5 1 4 3 7 7 8 6 7 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 2 6 1 5 1 4 3 4 2 6 3 4 3 7 2 6 1 4 1 5 1 2;
1 2 1 5 1 4 3 4 3 7 2 3 1 4 1 5 1 2 1 4 1 5 1 2;
2 3 1 5 1 4 2 3 2 6 1 5 1 4 1 5 1 2 1 4 1 5 1 2;
1 2 1 5 1 4 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2 ]
// here I've set the extra vertices beyond 3*nt as repeated
// 1 4 1 5 1 2 to avoid divisions by zero in vectorized
// interpolation (doesn't really work yet)
////this is the snippet for generating the magic numbers below.
/// Performance improves if they are inlined as data.
//pfa=zeros(1,256); bfa=pfa;
pow2=[128 64 32 16 8 4 2 1]';
//for l=0:255
// d2b=zeros(1,8)
// for i=1:8
// d2b(i)=int((l-d2b*pow2)/pow2(i))
// end
// sb8=d2b==1
// pbf=find(bp1==sb8(1) & bp2==sb8(2) & bp3==sb8(3)..
// & bp4==sb8(4) & bp5==sb8(5) & bp6==sb8(6)..
// & bp7==sb8(7) & bp8==sb8(8) )
// ppf=pbf(1)
// pfa(l+1)=int((ppf-1)/23)+1; bfa(l+1)=ppf-pfa(l+1)*23+23
//// note that this also works since 48 and 23 happen to be prime
//// among themselves
//end
//disp(int8(pfa))
//disp(int8(bfa))
//
/// The explanation is: for all the 256 possibilities of having
/// each of the 8 vertices of the cell above/below the threshold,
/// specify which is the relevant triangle pattern (pf) and
/// arrangement (bf)
pfa=[1 1 7 1 3 1 3 1 19 13 7 7 15 13 9 1 20 14 8 8 3 ..
20 3 1 25 25 9 7 15 13 9 36 4 2 4 2 5 13 5 1 4 ..
19 4 2 21 13 5 40 16 14 10 2 22 14 6 39 16 14 10 ..
35 5 47 41 41 23 1 11 1 17 23 11 3 27 13 7 7 27 15 ..
9 34 28 14 8 8 17 1 11 37 25 25 7 5 27 10 2 34 18 ..
24 12 4 17 17 5 37 18 2 12 38 17 44 32 38 28 16 10 ..
33 18 43 31 37 28 9 1 33 7 7 31 43 43 31 7 7 33 1 ..
9 1 37 31 43 19 33 13 21 28 38 32 44 20 38 32 3 18 ..
37 25 37 17 37 12 24 18 34 2 10 2 5 1 5 25 37 31 4 ..
17 33 8 14 28 34 14 22 27 34 7 13 27 38 11 23 17 1 ..
11 1 23 41 41 47 1 35 35 23 16 39 39 39 22 27 10 14 ..
16 40 40 40 21 42 4 19 4 37 5 13 5 2 4 2 4 36 36 ..
24 15 17 9 25 25 41 3 20 3 8 8 14 20 28 9 13 15 7 ..
7 13 19 1 3 1 3 1 7 1 1 ]
bfa=[1 2 2 3 2 4 3 5 2 3 4 5 3 5 5 9 2 3 4 5 6 7 7 ..
13 4 5 8 14 7 13 15 19 2 4 3 5 4 8 5 14 6 7 7 13 ..
7 15 13 19 3 5 5 9 7 15 13 19 7 13 15 19 11 17 17 ..
21 2 6 4 7 3 7 5 13 4 7 8 15 5 13 14 19 4 7 8 15 ..
7 11 15 17 8 15 12 16 15 17 16 20 3 7 5 13 5 15 9 ..
19 7 11 15 17 13 17 19 21 5 13 14 19 13 17 19 21 15 ..
17 16 20 17 18 20 22 2 4 6 7 4 8 7 15 3 5 7 13 5 ..
14 13 19 3 5 7 13 7 15 10 17 5 9 15 19 13 19 17 21 ..
4 8 7 15 8 12 15 16 7 15 10 17 15 16 17 20 5 14 13 ..
19 15 16 17 20 13 19 17 21 17 20 18 22 3 7 7 10 5 ..
15 13 17 5 13 15 17 9 19 19 21 5 13 15 17 13 17 17 ..
18 14 19 16 20 19 21 20 22 5 15 13 17 14 16 19 20 ..
13 17 17 18 19 20 21 22 9 19 19 21 19 20 21 22 19 ..
21 20 22 21 22 22 23 ]
// also this sits better outside of the loops:
v=ones(255,24);
for l=(2:255)
v(l,:)=ppinv(pfa(l),vtrian(bfa(l)*ppar(pfa(l))+23,:));
end
nfta=nft(bfa(1:256));
// now scan every cube of the 3d hypermat
nf=0
// a few definitions brought out of the loops
u1=int((0:35)/3 +1)*2-1; u2=u1+1;
v1=1:2:23;
//v2=v1+1; v12=[v1,v2]; va=1:12; vb=va+12;
uu1=4*u1; uu2=4*u2;
uv2=[v1*4+1;v1*4+2;v1*4+3]; uv1=uv2-4;
xyz=[];
// to dimension xyz maximally (e.g. (9,4*(nxm)*(nym)*(nzm)) )
// from start would be a waste of memory, but to grow it for
// every added triangle would be quite slow. I think that a good
// compromise is to resize xx,yy,zz at each step of the i loop
// (there xyz needs to grow only from (9,nt-1) to (9,4*nxm*nym+nt-1) )
nt=0
if datastruct=="h" then
nxm=nx-1; nym=ny-1; nzm=nz-1
nx1=1:nxm; ny1=1:nym; nz1=1:nzm; ny2=ny1+1; nz2=nz1+1;
u=1:3; nyzm=nym*nzm; Ny=1:ny; Nz=1:nz; js=(0:7)*nym;
yy8=[y(ny1);y(ny1);y(ny2);y(ny2);y(ny1);y(ny1);y(ny2);y(ny2)]'
zz8=[z(nz1);z(nz1);z(nz1);z(nz1);z(nz2);z(nz2);z(nz2);z(nz2)]'
// sort the points of the cube in canonical order - the
// outer in the loop the faster (?)
for i=nx1
// I scan the hypermatrix with i outer, try to collapse j and k
i1=i+1;
x8=x([i,i1,i1,i,i,i1,i1,i])
s8i=matrix(s(i,Ny,Nz),ny,nz); //s8i=s8i(:,:)
s8i1=matrix(s(i1,Ny,Nz),ny,nz); //s8i1=s8i1(:,:)
// s8i1(:,:) etc instead of s8i1 for compatibility with scilab 2.4.1
ss8=double([s8i(ny1,nz1); s8i1(ny1,nz1); s8i1(ny2,nz1); s8i(ny2,nz1); ..
s8i(ny1,nz2); s8i1(ny1,nz2); s8i1(ny2,nz2); s8i(ny2,nz2)])'-s0;
// this matrix ss8 now contains all the necessary values of s in the
// planes i and i+1. I play index tricks, and try to minimize the
// use of hypermatrices, as calculations with them are considerably
// slower.
ll=matrix(matrix(bool2s(ss8>0),nyzm,8)*pow2+1,nzm,nym);
// Recognize which pattern of >0 and <0 appears in each cell of
// this plane: boolean((ny-1)*(nz-1),8) --> integers in a snap,
// for the whole plane.
// Usually most of the cells have all 8 values either >s0 or <s0,
// and don't need to be considered for isosurfacelets. So the following
// loop is only on those cells which have some vertices on
// opposite sides of the s0 divider.
[kk,jj]=find(ll>1 & ll<256); njk=length(jj);
// making space in xyz
xyz=[xyz(1:9*nt);zeros(36*njk,1)];
for q=1:njk
j=jj(q); k=kk(q);
l=ll(k,j)
nftbf=nfta(l);
// pick up the relevant vertices for constructing triangles
// and generate the triangular facelets
X=[x8;yy8(j,:);zz8(k,:);ss8(k,js+j)]
// X 4x8 stores {x,y,z,s-s0} of the 8 vertices of the cell.
//timer()
Y=X(:,v(l,:)) // Y(4,24)
//the following criptic lines interpolate linearly along the relevant
// sides, and return nftbf triples of x,y,z, vertices of the triangles.
// Matrix flattening is used to increase speed. Index arrays like
// u,u1,u2,v1,v2,uu1,uu2,uv1,uv2, have been defined above.
S1=Y(uu1); S2=Y(uu2);
D=S2-S1; N=S2.*Y(uv1)-S1.*Y(uv2);
// denominators are never zero if Y is formed with the right points
// and if only the first nftbf triangles are computed
uu=1:9*nftbf;
xyz(9*nt+uu)=N(uu)./D(uu)
//t=t+timer()
// There is a redundancy of operations, as points are
// always aligned (have two equal coordinates), so will be their
// mean point, and there would be no need to compute it. I'm afraid
// that any catch of that will only overburden the snippet.
nt=nt+nftbf
end
end
else
ll=matrix(bool2s(field(kvert)>f0),ncell,8)*pow2+1
jj=find(ll>1 & ll<256);
xyz=zeros(9*sum(nfta(ll(jj))),1);
for j=jj
l=ll(j); k=kvert(j,:); nftbf=nfta(l);
X=[dcorvg(k,1)';dcorvg(k,2)';dcorvg(k,3)';field(k)'-f0]
// X 4x8 stores {x,y,z,s-s0} of the 8 vertices of the cell.
Y=X(:,v(l,:)) // Y(4,24)
S1=Y(uu1); S2=Y(uu2);
D=S2-S1; N=S2.*Y(uv1)-S1.*Y(uv2);
uu=1:9*nftbf;
xyz(9*nt+uu)=N(uu)./D(uu)
nt=nt+nftbf
end
end
// output only the xx,yy,zz needed
u=1:nt
xyz=matrix(xyz,9,-1)
xx=xyz(1:3:7,u); yy=xyz(2:3:8,u); zz=xyz(3:3:9,u);
//write(%io(2),'time spent in the selected routine:'+string(t))
return
//function [pp,ppar]=cubeperm()
//// all the topologically equivalent permutations of the vertices:
//// (enumerating is less clever than thinking of an algorithm)
//// ( I'm dummy as they are just all the elements of a discrete SO(3) )
////
//p=zeros(162,8); par=zeros(162,1);
//p(1,:)= [1 2 3 4 5 6 7 8];
//// around z
//p(2,:)= [2 3 4 1 6 7 8 5];
//p(3,:)= [3 4 1 2 7 8 5 6];
//p(4,:)= [4 1 2 3 8 5 6 7];
//// around x
//p(5,:)= [4 3 7 8 1 2 6 5];
//p(6,:)= [8 7 6 5 4 3 2 1];
//p(7,:)= [5 6 2 1 8 7 3 4];
//// around y
//p(8,:)= [2 6 7 3 1 5 8 4];
//p(9,:)= [6 5 8 7 2 1 4 3];
//p(10,:)=[5 1 4 8 6 2 3 7]; par(1:10)=1;
//// reflect xy
//p(11:20,:)=p(1:10,[5:8,1:4]); par(11:20)=-1;
//// reflect yz
//p(21:30,:)=p(1:10,[2 1 4 3 6 5 8 7]); par(21:30)=-1;
//// reflect xz
//p(31:40,:)=p(1:10,[4 3 2 1 8 7 6 5]); par(31:40)=-1;
//// this is still missing
//p(41,:)=[7 3 2 6 8 4 1 5]; par(41)=1;
////these are 27 unique -let's try to add more
//p(42:81,:)=p(2:41,p(2,:)); par(42:81)=par(2:41);
//p(82:121,:)=p(2:41,p(5,:)); par(82:121)=par(2:41);
//p(122:161,:)=p(2:41,p(8,:)); par(122:161)=par(2:41);
//// not enough, still this
//p(162,:)=[8 5 1 4 7 6 2 3]; par(162)=1;
//// now there are 48 unique (take any of the 8 vertices as first -
//// then you have 3! ways to permute it's adjacent nodes)
//// now I sort and uniq them via a string sort
//ps=string(p(:,1))+" "+string(p(:,2))+" "+string(p(:,3))+" "+string(p(:,4))..
// +" "+string(p(:,5))+" "+string(p(:,6))+" "+string(p(:,7))+..
// " "+string(p(:,8))
//[ps,nn]=gsort(ps); par=par(nn); pss=" ";
//pss(1)=ps(1); ppar(1)=par(1); j=1;
//for i=1:size(p,1)
// if ps(i)<>pss(j) then pss(j+1)=ps(i); ppar(j+1)=par(i); j=j+1; end
//end
//pp=evstr(pss); clear ps; clear p; clear par;
//
//return
endfunction
function c=shadecomp(xx,yy,zz,l,shine,m)
// Computes facelet colors for subsequent rendering with
// plot3d. Having the access to the computed colors allows
// further transformations, and assignation of faces to different
// segments of stacked colormaps.
//
// c(1,size(xx,2)) for normal plot3d(xx,yy,list(zz,c)) rendering,
// while if m=2 (goraud) c has the same size of xx,yy,zz
// for rendering with Stephane Mottelet's interpolated color plot3d
// extension
[lhs,rhs]=argn(0);
if rhs==0 then
return
end
if ~exists('l','local') then l=[1,1,1]; end
if ~exists('shine','local') then shine=1; end
if ~exists('m','local') then m=1; end
ns=size(xx,1); nf=size(xx,2)
i1=1:ns; i2=[2:ns,1]; i3=[3:ns,1,2];
nn1=-((yy(i1,:)-yy(i2,:)).*(zz(i2,:)-zz(i3,:))-...
(yy(i2,:)-yy(i3,:)).*(zz(i1,:)-zz(i2,:)));
//if ns>3 then
nn2=((xx(i1,:)-xx(i2,:)).*(zz(i2,:)-zz(i3,:))-...
(xx(i2,:)-xx(i3,:)).*(zz(i1,:)-zz(i2,:)));
nn3=-((xx(i1,:)-xx(i2,:)).*(yy(i2,:)-yy(i3,:))-...
(xx(i2,:)-xx(i3,:)).*(yy(i1,:)-yy(i2,:)));
//else
// nn2=nn1; nn3=nn1;
//end
// nn1,nn2,nn3 are 3 matrices of size (ns,nf), which store the
// 3 components of the normal at each vertex.
// for triangular (ns=3) faces this calculation is redundant,
// since triangles are always planar and the three vertex
// normals will be identical
[degf1,degf2]=find(abs(nn1)+abs(nn2)+abs(nn3)<10*%eps);
// this can happen for instance if there are coincident vertices;
// it shouldn't, if xx, yy, zz are constructed properly, but
// I want shadesurf to get through it anyway
// the following is capable to handle two consecutive coincident
// vertices. Three or more consecutive coincident vertices are
// partially handled, and a division by zero will result below.
if degf1<>[] then
q1=degf1+(degf2-1)*ns; q2=modulo(degf1+1,ns)+1+(degf2-1)*ns
nn1(q1)=nn1(q2); nn2(q1)=nn2(q2); nn3(q1)=nn3(q2)
// I assume that in this case at least the second next vertex of
// the face is not degenerate (if two vertices coincide, then
// two consecutive normals are null)
end
//nn3(degf1,degf2)=1; // this is bad but works as last resort
nn=sqrt(nn1.^2+nn2.^2+nn3.^2);
nn(nn==0)=1; // this is a last resort for null faces, with more than
// two coinciding vertices, or faces degenerate to a
// segment (e.g., triangles with a zero side)
//cc=sqrt(nn1.^2+nn2.^2+nn3.^2);
// color proportional to the slope
//cc=1../max(a*nn1+b*nn2,1);
// color inversely proportional to the lightened side
c=(l(1)*nn1+l(2)*nn2+l(3)*nn3)./nn./sqrt(l*l');
c=((c+1)/2).^shine;
// color proportional to the cosine of the angle (local normal)^(sun)
// the direction of the sun is [l(1), l(2), l(3)]
clear nn nn1 nn2 nn3
if abs(m)==1 then
c=mean(c,'r')
// flat shading -> only one c per face is output, the average of
// all the c values
end
if abs(m)==2
// if facelets are triangular, they are obviously planar
// I construct a vertex c and try to go goraud
// if ns==4 then
//// recognize if the vertices are laid on a structured grid:
//// try if there is a subset of faces set side to side.
// stru1=find(xx(4,1:(nf-1))==xx(1,2:nf) & ..
// yy(4,1:(nf-1))==yy(1,2:nf) & zz(4,1:(nf-1))==zz(1,2:nf) )
// stru2=find(xx(2,1:(nf-1))==xx(1,2:nf) & ..
// yy(2,1:(nf-1))==yy(1,2:nf) & zz(2,1:(nf-1))==zz(1,2:nf) )
// end
// if %f then
// disp('structured!')
// end
// lex_sort seems the best solution to look for adjacencies
// arrays are silently flattened here
[xyz,k]=lex_sort([xx(:),yy(:),zz(:)]);
clear xx yy zz
q=[0,find( or(xyz(1:$-1,:)~=xyz(2:$,:),'c') ), ns*nf];
for i=1:length(q)-1
qq=k(q(i)+1:(q(i+1)))
c(qq)=mean(c(qq))
end
end
// range expansion
if m<0 then
if max(c)-min(c)>2*%eps then
c=(c-min(c))/(max(c)-min(c))
else
// this can happen if the surface is a plane, and I want this to
// be handled
c=ones(size(c,1),size(c,2));
end
end
return
endfunction
function oplot3d(data,nc,theta,alpha,leg,flag,ebox)
// data=list(xx1,yy1,zz1,c1,icontext1,xx2,yy2,zz2,c2,icontext2,...)
// nc vector of number of colors in the stack
// to make things easier to begin with, let's suppose that all
// the objects have facelets with the same number of sides
[lhs,rhs]=argn(0);
if ~exists('nc','local') then nc=xget('lastpattern'); end
// usually one wants to provide nc, this is a last resource escape
if ~exists('theta','local') then theta=45; end
if ~exists('alpha','local') then alpha=35; end
if ~exists('leg','local') then leg='X@Y@Z'; end
if ~exists('flag','local') then flag=[-1 2 4]'; end
if ~exists('ebox','local') then ebox=[0 0 0 1 1 1]'; end
if rhs==0 | type(data)<>15 then
write(%io(2),..
' The first argument of oplot3d has to be a list of xx,yy,zz,c'+..
',icontext tuples!')
return
end
// scanning the argument "data" for valid entries
lobj=[]; nobj=0; nfj=[]; ncj=[]; ndata=length(data); j=1;
while j<=ndata
if type(data(j))==15 then
if length(data(j))==4 then data(j)(5)=1; end
if length(data(j))<>5 then
write(%io(2),..
'graphic object #'+string(nobj+1)+' is a list, but not a 5-tuple!')
return
end
nobj=nobj+1;
lobj=[lobj,%t]
nfj=[nfj,size(data(j)(1),1)]
ncj=[ncj,size(data(j)(4),1)]
j=j+1
else
if ndata < j+4 then
write(%io(2),..
'last graphic object is not a 5-tuple!')
return
end
if ~(type(data(j))==1 & type(data(j+1))==1 &..
type(data(j+2))==1 & type(data(j+3))==1 &..
type(data(j+4))==1) then
write(%io(2),..
'graphic object #'+string(nobj+1)+' is not a 5-tuple of reals!')
return
else
nobj=nobj+1;
lobj=[lobj,%f]
nfj=[nfj,size(data(j),1)]
ncj=[ncj,size(data(j+3),1)]
j=j+5
end
end
end
// find the maximum number of sides of all the faceted objects
nf=max(nfj)
ncv=max(ncj)
if or(ncj<>1 & ncj<>nfj) then
write(%io(2),..
' something wrong with the color arrays dimensions:')
for k=1:nobj
if ncj(k)<>1 & ncj(k)<>nfj(k) then
write(%io(2),'object '+string(k)+' has facelets with '+..
string(nfj(k))+' sides, but the color array has '+..
string(ncj(k))+' corresponding entries')
end
end
return
end
// Now we construct a single set xx,yy,zz,cc for all the objects.
// the number of vertices is augmented to nf if nf(j)<nf. This
// allows concatenation of xx,yy,zz; a little memory consuming,
// but easier to code than calling plot3d separately for each object
// Besides, a single call presents no visibility issues.
// One object with vertex colors will force all to have vertex colors.
xx=[];yy=xx;zz=xx;cc=xx;
j=1;
for k=1:nobj
if lobj(k) then
xx=[xx,data(j)(1)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
yy=[yy,data(j)(2)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
zz=[zz,data(j)(3)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
ic=min(max(data(j)(5),1),length(nc))
cc=[cc,data(j)(4)([1:ncj(k),ncj(k)*ones(1,nf-ncj(k))],:)..
*(nc(ic)-1)+sum(nc(1:(ic-1)))+1]
j=j+1
else
xx=[xx,data(j)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
yy=[yy,data(j+1)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
zz=[zz,data(j+2)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
ic=min(max(data(j+4),1),length(nc))
cc=[cc,data(j+3)([1:ncj(k),ncj(k)*ones(1,nf-ncj(k))],:)..
*(nc(ic)-1)+sum(nc(1:(ic-1)))+1]
j=j+5
end
end
clear data // it still occupies memory, not needed any more
plot3d1(xx,yy,list(zz,cc),theta,alpha,leg,flag,ebox)
return
endfunction
function [xx,yy,zz]=sphere(x0,r,n)
// expanded from SCI/surface/surfaces.sci
[lhs,rhs]=argn(0);
if rhs<3 then n=16; end
if rhs<2 then r=1; end
if rhs<1 then x0=[0,0,0]; end
if size(x0)==[3,1] then x0=x0'; end
if size(x0,2)<>3 then
disp('wrong size of x0'); return
end
ns=size(x0,1)
if length(r)<>ns then r=r(1)*ones(ns,1); end
vn=2*n
// prototype sphere
u = linspace(-%pi/2,%pi/2,n);
v = linspace(0,2*%pi,vn);
x= cos(u)'*cos(v);
y= cos(u)'*sin(v);
z= sin(u)'*ones(v);
in=1:(n-1); inp=2:n; in2=1:(vn-1)
xxx=[matrix(x(in,in2+1),1,(n-1)*(vn-1));
matrix(x(in,in2),1,(n-1)*(vn-1));
matrix(x(inp,in2),1,(n-1)*(vn-1));
matrix(x(inp,in2+1),1,(n-1)*(vn-1))]
yyy=[matrix(y(in,in2+1),1,(n-1)*(vn-1));
matrix(y(in,in2),1,(n-1)*(vn-1));
matrix(y(inp,in2),1,(n-1)*(vn-1));
matrix(y(inp,in2+1),1,(n-1)*(vn-1))]
zzz=[matrix(z(in,in2+1),1,(n-1)*(vn-1));
matrix(z(in,in2),1,(n-1)*(vn-1));
matrix(z(inp,in2),1,(n-1)*(vn-1));
matrix(z(inp,in2+1),1,(n-1)*(vn-1))]
//multiplication of spheres
nf=size(xxx,2);
xx=zeros(4,nf*ns); yy=xx; zz=xx
for i=1:ns
xx(:,((i-1)*nf+1):i*nf)=xxx*r(i)+x0(i,1)
yy(:,((i-1)*nf+1):i*nf)=yyy*r(i)+x0(i,2)
zz(:,((i-1)*nf+1):i*nf)=zzz*r(i)+x0(i,3)
end
return
endfunction
function [xx,yy,zz]=spaghetti(x,y,z,w,nf)
[lhs,rhs]=argn(0);
if rhs==0 then
disp('demo of spaghetti(x,y,z,w)');disp('');
comm=[..
'h=(-25:25)''/20; s=(tanh(h.^2/2)+1)/2; alpha=(-%pi:0.8:%pi);';..
'nl=length(s); na=length(alpha);';..
'x=zeros(nl,na); y=x; z=x; w=zeros(nl,3*na);';..
'for i=1:na;';..
' phi=alpha(i);';..
' x(:,i)=s*cos(phi); y(:,i)=h; z(:,i)=s*sin(phi);';..
'end';..
'xbasc(); [xx,yy,zz]=spaghetti(x,y,z,0.08); shadesurf(xx,yy,zz,10);']
write(%io(2),comm)
execstr(comm)
xtitle('demo for spaghetti()')
xx=[];yy=[];zz=[];
return
end
xx=[];
if rhs<5 then nf=11; end
if rhs<3 then
disp('spaghetti() wants one or more trajectories x,y,z !')
return
end
if rhs==3 then w=(max(y)-min(y))/20; end //just a given value
if size(x)~=size(y) | size(z)~=size(y) | size(x)~=size(z) then
disp('inconsistency in x,y,z lengths')
return
end
np=size(x,1); nv=size(x,2);
if np==1 then
disp('cannot make spaghetti of single points!')
return
end
if size(w)==[1,np] then
w=w'
end
if size(w)==[np,1] then
w=w*ones(1,nv)
end
if size(w,1)<>np | size(w,2)<>nv then
w=w(1)*ones(np,nv);
end
if np==2 then
// "arrows3d" mode: I invent a middle point, so the following
// assignments work
x=[x(1,:); (x(1,:)+x(2,:))/2; x(2,:)];
y=[y(1,:); (y(1,:)+y(2,:))/2; y(2,:)];
z=[z(1,:); (z(1,:)+z(2,:))/2; z(2,:)];
np=3
w=[w(1,:);w]
end
fd=[cos(2*%pi*(1:nf)/nf);sin(2*%pi*(1:nf)/nf)]
xx=zeros(4,nf*np*nv); yy=xx; zz=yy; // only (np-1)*nv tubelets, but
// the last arrowhead requires
// more facelets
for j=1:nv
//array of versors of the segments
un=zeros(np-1,3);
un=[x(2:np,j)-x(1:(np-1),j),y(2:np,j)-y(1:(np-1),j),..
z(2:np,j)-z(1:(np-1),j)];
nn=sqrt(sum(un.^2,'c'));
// take care of possible coincident points: assign an un<>0
// even to those coincident
isep=find(nn>10*%eps);
if isep<>[] then
// if all the points coincide, don't even try to mend anything
// (a division by 0 will result soon)
un(1:(isep(1)-1),1)=un(isep(1),1);
un(1:(isep(1)-1),2)=un(isep(1),2);
un(1:(isep(1)-1),3)=un(isep(1),3);
nn(1:(isep(1)-1))=nn(isep(1))
//so if the first points were coincident, they take the un of their
// followers
else
write(%io(2),"all the points of line "+string(j)+" coincide!")
break
end
// now each nn=0 has for sure a predecessor <>0
for i=find(nn<=10*%eps);
un(i,:)=un(i-1,:); nn(i)=nn(i-1);
end
// the loop above is not vectorizable! Feedback!
nn=[nn,nn,nn];
un=un./nn;
//compute 2 local normals to each point of the trail
//intermediate points: first normal=bisectrix of the vertex
N1=zeros(np,3);
N1(2:(np-1),:)=un(1:(np-2),:)-un(2:(np-1),:);
//extremes: equal that at the next (previous) point
N1(1,:)=-N1(2,:); N1(np,:)=N1(np-1,:);
//really no idea of why N1(1,:)=-N1(2,:) with minus, but solves a bug.
//now, we could have N1(:,i)=[0;0;0] either for coincident
// points or for colinear segments. Let's take care of it.
// We cannot just set N1 to an arbitrary direction, because
// that could be too different from its neighbor.
nN1=sqrt(sum(N1.^2,'c'));
if find(abs(nN1)>10*%eps)==[] then
//if _all_ the points are colinear (this can happen in arrow mode)
if find(abs(un(:,1))>10*%eps | abs(un(:,2))>10*%eps)==[] then
//if the whole trail is parallel to the z axis
N1=[ones(np,1),zeros(np,2)]
else
N1(2:np,:)=[un(:,2),-un(:,1),zeros(np-1,1)]
//this is for sure perpendicular to un
N1(1,:)=N1(2,:); N1(np,:)=N1(np-1,:);
end
nN1=sqrt(sum(N1.^2,'c')); // recalculate for the points which
// have been taken care of
else
//now, if not all points are colinear, lets put the missing N1s
// (for those which are still colinear). Let's start from the
// beginning of the trail:
ibent=find(nN1>10*%eps);
N1(1:(ibent(1)-1),1)=N1(ibent(1),1);
N1(1:(ibent(1)-1),2)=N1(ibent(1),2);
N1(1:(ibent(1)-1),3)=N1(ibent(1),3);
nN1(1:(ibent(1)-1))=nN1(ibent(1))
// now each N1=0 has for sure a predecessor <>0
for i=find(nN1<=10*%eps);
N1(i,:)=N1(i-1,:); nN1(i)=nN1(i-1);
end
// still one thing to do - if the trail is even a little zigzag,
// neighboring points can have almost opposite N1. Let's flip
// those which have a negative projection on their predecessor
P1=sign(N1(1:(np-1),1).*N1(2:np,1)+N1(1:(np-1),2).*N1(2:np,2)+..
N1(1:(np-1),3).*N1(2:np,3))
iflip=find(cumprod(P1)<0)+1 // I'm really clever!
N1(iflip,:)=-N1(iflip,:)
end
//normalization
N1=N1./[nN1,nN1,nN1];
//intermediate points: second normal=binormal to the previous
N2=zeros(np,3);
N2(2:(np-1),1)=un(1:(np-2),2).*N1(2:(np-1),3)-..
un(1:(np-2),3).*N1(2:(np-1),2);
N2(2:(np-1),2)=un(1:(np-2),3).*N1(2:(np-1),1)-..
un(1:(np-2),1).*N1(2:(np-1),3);
N2(2:(np-1),3)=un(1:(np-2),1).*N1(2:(np-1),2)-..
un(1:(np-2),2).*N1(2:(np-1),1);
//extremes: equal that at the next (previous) point
N2(1,:)=N2(2,:); N2(np,:)=N2(np-1,:);
//normalization
nN1=sqrt(sum(N2.^2,'c'));
nN1(find(abs(nN1)<%eps))=1;
N2=N2./[nN1,nN1,nN1];
//Sometimes the intrinsic twist of the line is such, that it is better
// to further rotate N1 and N2 of an integer number of quarter of turns
// around their commom normal, i.e. send (N1,N2) --> (+-N2,+-N1)
// in order to minimize the angles between corresponding normals of
// neighboring points. This should be done here.
// TO DO
//generate a vector of vertices of the facelet, still to sort
xt=zeros(np,nf); yt=xt; zt=yt;
for k=1:nf // could I vectorize this?
xt(:,k)=x(:,j)+(N1(:,1)*fd(1,k)+N2(:,1)*fd(2,k)).*w(:,j)
yt(:,k)=y(:,j)+(N1(:,2)*fd(1,k)+N2(:,2)*fd(2,k)).*w(:,j)
zt(:,k)=z(:,j)+(N1(:,3)*fd(1,k)+N2(:,3)*fd(2,k)).*w(:,j)
end
// generate the faces of the tube
k1=1:nf; k2=[2:nf,1]; np2=1:(np-2); np2f=(np-2)*nf;
xx(:,(j-1)*np*nf+(1:(np-2)*nf))=..
[matrix(xt(np2,k1),1,np2f);matrix(xt(np2+1,k1),1,np2f);..
matrix(xt(np2+1,k2),1,np2f);matrix(xt(np2,k2),1,np2f)]
yy(:,(j-1)*np*nf+(1:(np-2)*nf))=..
[matrix(yt(np2,k1),1,np2f);matrix(yt(np2+1,k1),1,np2f);..
matrix(yt(np2+1,k2),1,np2f);matrix(yt(np2,k2),1,np2f)]
zz(:,(j-1)*np*nf+(1:(np-2)*nf))=..
[matrix(zt(np2,k1),1,np2f);matrix(zt(np2+1,k1),1,np2f);..
matrix(zt(np2+1,k2),1,np2f);matrix(zt(np2,k2),1,np2f)]
// last segment: arrowhead
np1=np-1; xc=zeros(1,nf); yc=xc; zc=yc; xp=yc; yp=yc; zp=yc;
xc(k1)=-x(np1,j)+2*xt(np1,k1)
yc(k1)=-y(np1,j)+2*yt(np1,k1)
zc(k1)=-z(np1,j)+2*zt(np1,k1)
xp(k1)=x(np,j)
yp(k1)=y(np,j)
zp(k1)=z(np,j)
xx(:,(j-1)*np*nf+(((np-2)*nf+1):(np-1)*nf))=..
[xt(np1,k1);xc(k1);xc(k2);xt(np1,k2)]
yy(:,(j-1)*np*nf+(((np-2)*nf+1):(np-1)*nf))=..
[yt(np1,k1);yc(k1);yc(k2);yt(np1,k2)]
zz(:,(j-1)*np*nf+(((np-2)*nf+1):(np-1)*nf))=..
[zt(np1,k1);zc(k1);zc(k2);zt(np1,k2)]
xx(:,(j-1)*np*nf+((np1*nf+1):np*nf))=..
[xc(k2);xc(k1);xp(k1);xp(k2)]
yy(:,(j-1)*np*nf+((np1*nf+1):np*nf))=..
[yc(k2);yc(k1);yp(k1);yp(k2)]
zz(:,(j-1)*np*nf+((np1*nf+1):np*nf))=..
[zc(k2);zc(k1);zp(k1);zp(k2)]
//note that only putting equal the 3rd and 4th point, my
// shadesurf works (trick)
end
endfunction
function nc=setcmap(i,nc,r)
//
// syntax: setcmap(i,nc,r), setcmap(i,nc), setcmap(i)
//
// i : index of my predefined colormaps
// the list is printed if i is out of range
// Negative i gives the complementar colormap
// nc: number of colors - useful for limited monitors
// or private colormaps - 32 gives good results
// r: the window is redrawn afterwards if r<>0
// The results are poor if nc has been changed
//
[rhs,lhs]=argn(0);
if lhs==0 then r=0; nc=xget("lastpattern"); i=9999; end
if lhs==1 then r=0; nc=int(xget("lastpattern")/length(i)); end
if lhs==2 then r=0; end
if nc<0 then nc=32; end
i=matrix(i,length(i),1)
//nc=[matrix(nc,length(nc),1);nc($)*ones(length(i)-length(nc),1)]
//would be nice, but as the function is written now, nc has to be a
// scalar
// Here are some colormaps: (crooked way to define them indeed -
// but it was the first one I figured out long ago -
k=1;
cname(k)='BlackWhite';
execstr(cname(k)+"=linspace(0,1,nc)''*[1,1,1];")
k=k+1;
cname(k)='Fluorescine';
execstr(cname(k)+"=[((1:nc).^2)/nc;1:nc;((1:nc).^2)/nc]''/nc;")
k=k+1;
cname(k)='Caramel';
execstr(cname(k)+"=[(0:nc-1).^0.67*nc^0.33;1:nc;...
((1:nc).^3)/nc^2]''/nc;")
k=k+1;
cname(k)='Cappuccino'; execstr(cname(k)+"=...
[(0:nc-1).^0.8*nc^0.2;(1:nc).^2/nc;((1:nc).^3)/nc^2]''/nc;")
k=k+1;
cname(k)='Chocolate'; execstr(cname(k)+"=...
[(0:nc-1).^0.8*nc^0.2;(1:nc).^2/nc;sin(3*%pi*(1:nc)/nc)/2+1]''/nc;")
k=k+1;
cname(k)='Hot'; execstr(cname(k)+"=...
[min(1,max((2*(1:nc)/nc),0));...
min(1,max((2.5*(1:nc)/nc)-1,0));...
min(1,max((3*(1:nc)/nc)-2,0))]'';")
k=k+1;
cname(k)='Hot2';
// this is copied from hotcolormap of scilab 2.4.1
execstr(cname(k)+"=...
[(1:fix(3/8*nc))''/fix(3/8*nc) zeros(fix(3/8*nc),1) ...
zeros(fix(3/8*nc),1); ...
ones(fix(3/8*nc),1) (1:fix(3/8*nc))''/fix(3/8*nc) ...
zeros(fix(3/8*nc),1); ...
ones((nc-2*fix(3/8*nc)),1) ones((nc-2*fix(3/8*nc)),1) ...
(1:(nc-2*fix(3/8*nc)))''/(nc-2*fix(3/8*nc))];")
k=k+1;
cname(k)='BluRed'; execstr(cname(k)+"=[1:nc;0*(1:nc);nc:-1:1]''/nc")
k=k+1;
cname(k)='LightBlueRed';execstr(cname(k)+"=[1:nc;nc:-1:1;nc:-1:1]''/nc;")
k=k+1;
cname(k)='Sunrise'; execstr(cname(k)+..
"=[[zeros(1,nc-floor(nc/4)-floor(nc/2)),...
linspace(1,nc,floor(nc/4))./nc,ones(1,floor(nc/2))]'',..
[linspace(0,1,ceil(nc/2)),linspace(1,0,floor(nc/2))]'',..
[ones(1,floor(nc/2)),linspace(nc,1,floor(nc/4))./nc,...
zeros(1,nc-floor(nc/2)-floor(nc/4))]''];;")
k=k+1;
cname(k)='BluBlackRed';
execstr(cname(k)+"=[zeros(1,ceil(nc/2)),linspace(1,nc,floor(nc/2));...
zeros(1,nc);linspace(nc,1,floor(nc/2)),zeros(1,ceil(nc/2))]''/nc;")
k=k+1;
cname(k)='BluBlackRed_II';execstr(cname(k)+"=sqrt(BluBlackRed);")
k=k+1;
cname(k)='BluGreenRed';
execstr(cname(k)+"=[zeros(1,ceil(nc/2)),linspace(1,nc,floor(nc/2));..
zeros(1,floor(nc/4)),linspace(1,nc,floor(nc/4)),...
linspace(nc,0,nc-3*floor(nc/4)),zeros(1,floor(nc/4));...
linspace(nc,1,floor(nc/2)),zeros(1,ceil(nc/2))]''/nc;")
k=k+1;
cname(k)='BluGreenRed_II';
execstr(cname(k)+"=[zeros(1,floor(nc/2)),..
linspace(1,nc,ceil(nc/2));...
linspace(0,nc,ceil(nc/2)),linspace(nc,0,floor(nc/2));...
linspace(nc,0,ceil(nc/2)),zeros(1,floor(nc/2))]''/nc;")
k=k+1;
cname(k)='BluGreenRed_III'; execstr(cname(k)+"=[1:nc;...
linspace(0,nc,floor(nc/2)),linspace(nc,0,ceil(nc/2))...
;nc:-1:1]''/nc;")
k=k+1;
cname(k)='Prism'; execstr(cname(k)+"=...
[ sin((linspace(2,2*nc,nc)+2.*nc/3)*%pi/nc);...
sin((linspace(2,2*nc,nc)-2.*nc/3)*%pi/nc);...
sin((linspace(2,2*nc,nc))*%pi/nc)]''/2+1./2;")
k=k+1;
cname(k)='Prism_II'; execstr(cname(k)+"=Prism.^(1/2)'';")
k=k+1;
cname(k)='Bands'; execstr(cname(k)+"=...
[1:nc;nc:-1:1;nc*((-sin(15*%pi*(1:nc)/nc)+1)/2)]''/nc;")
k=k+1;
cname(k)='BlackBands'; execstr(cname(k)+"=...
([sin((linspace(2,2*nc,nc)+2.*nc/3)*%pi/nc);...
sin((linspace(2,2*nc,nc)-2.*nc/3)*%pi/nc);...
sin((linspace(2,2*nc,nc))*%pi/nc)]''/2+1./2)...
.*modulo([1:nc;1:nc;1:nc]''-1,nc/8)*7/nc;")
if lhs==0 then
// demo - interactive choice of colormaps
currwin=xget('window')
a=winsid(); xset('window',a($)+1); // note that if a=[], a+1=1
for j=-k:k;
setcmap(j,nc);
subwind(j+k+1,2*k+1,1);
xstring(0,-0.06,string(j))
pixmapl(1:nc)
end
subwind(1,1,1)
xtitle('All the colormaps at the current color depth ('+string(nc)+..
' colors)')
disp " "
i=x_choose(string((-k:k)')+' '+..
[cname(k:-1:1);'Scilab''s default';cname],..
'Choose one colormap!','Forget!')-k-1
xdel(a($)+1); xset('window',currwin); setcmap(i,nc,1)
return
end
if i==0 then xset("default"); end
if abs(i)>k then
write(%io(2)," ")
write(%io(2),"0 default graphic context")
for j=1:k
write(%io(2),string(j)+" "+cname(j));
end
end
if abs(i)>=1 & abs(i)<=k then
write(%io(2),string(i)+" "+cname(abs(i)))
ccol=[];
for j=1:length(i)
// nc=ncv(j); //for the future version
execstr("ccol=[ccol;(sign(-i(j))+1)/2-sign(-i(j))*"+..
cname(abs(i(j)))+"]");
end
xset('colormap',ccol)
if r<>0 then write(%io(2),'redrawing...'); xbasr(xget("window")); end
end
nc=xget("lastpattern")
// reset and returned, just for consistency check
endfunction
|