File: demo_isoSurf.sci

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (1305 lines) | stat: -rw-r--r-- 46,878 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
function demo_isoSurf()
demo_help demo_isoSurf


//display an isosurface with Gouraud shaded triangles

//cd ENRICO;
//exec loader.sce
//cd ../

f = gcf() ;
SetPosition();
f.color_map = graycolormap(1024);
drawlater();
nx=20; ny=20; nz=20; s=hypermat([nx,ny,nz]);
x=linspace(-4.5,4.5,nx); xq=x'*ones(1,ny);
y=linspace(-4.5,4.5,ny); yq=ones(nx,1)*y;
z=linspace(-4.5,4.5,nz);

for i=1:nz 
  s(:,:,i)=1../((xq-2).^2+yq.^2+(z(i)-2)^2)+1../((xq+2).^2+yq.^2+(z(i)+2)^2); 
end;

[xx,yy,zz]=isosurf3d(x,y,z,-s,-.18);
c= shadecomp(xx,yy,zz,[1,0,1],3,2);

xbasc();
//xtitle('Isosurface resulting of the attraction of two spheres');
plot3d(xx,yy,list(zz,c*(xget('lastpattern')-1)+1))
e = gce();
e.color_mode = 0 ;
e.color_flag = 3;
//drawnow();

f = gcf();
f.pixmap='on';
a = gca();
a.isoview = 'on';
t = a.title ;
t.text = 'Isosurface resulting of the attraction of two spheres' ;
t.font_size = 5 ;
drawnow();
for i=1:45
  a.rotation_angles = a.rotation_angles + [8,0] ;
  show_pixmap() ;
end;

xdel();

nc=30; setcmap([1 2 3 4 6 7],nc)
drawlater();
// generate various 3d objects
[xx1,yy1,zz1]=sphere(rand(2,3),0.1,12);
[xx2,yy2,zz2]=sphere(rand(2,3),0.05,12);
s=(0:0.02:1)';
[xx3,yy3,zz3]=spaghetti(cos(4*%pi*s)/4+s,-sin(4*%pi*s)/4,s);

// calculate their shading
l=[2 0 3];
c1=shadecomp(xx1,yy1,zz1,l,2,2);
c2=shadecomp(xx2,yy2,zz2,l,2,2);
c3=shadecomp(xx3,yy3,zz3,l,2,2);

// group them and plot them (each in a different shade)
data=list(xx1,yy1,zz1,c1,2,xx2,yy2,zz2,c2,6,xx3,yy3,zz3,c3,3);
xbasc();
//xtitle('Shaded 3d objects of different colors') ;
oplot3d(data,nc*ones(1,5),45,80)

f = gcf();
SetPosition();
f.pixmap='on';
a = gca();
a.isoview = 'on';
t = a.title ;
t.text = 'Shaded 3D objects of different colors' ;
t.font_size = 5 ;
drawnow();
for i=1:180
  a.rotation_angles(2) = a.rotation_angles(2) + 2 ;
  show_pixmap() ;
end;


endfunction

function [xx,yy,zz]=isosurf3d(x,y,z,s,s0)
// 
//   xx,yy,zz= (nf,3)  facelet vertices
//   s= real hypermat([length(x),length(y),length(z)])
//   s0 scalar
//
//   hexaedral FEM syntax:
//   [xx,yy,zz]=isosurf3d(dcorvg,kvert,field,f0)
//
//     dcorvg=(nvert,3) coordinates of the vertices of the cells
//     kvert=(ncells,8) list of the vertices of each cell (in a proper order)
//     field=(nvert,1) values of the scalar field at the vertex points
//     f0 scalar 
//
// example: see the demo below.
//
// Plot with:
//    xbasc(); plot3d1({xx;xx(1,:)},{yy;yy(1,:)},{zz;zz(1,:)})
// or
//    xbasc(); shadesurf(xx,yy,zz)
//
// note: this implementation is rather slow, surely due to the
//       nested loops and hypermat operations, which I don't know
//       how to vectorize more readably with scilab syntax (in
//       principle the algorithm is completely parallelizable). 
//       Timings are data dependent, as the work depends on
//       the number of facelets found.

//t=0

[lhs,rhs]=argn(0);
if rhs==0 then
//demo
    disp "demo of isosurf3d(x,y,z,s,s0)"
    disp " "
    democomm=[
    "  nx=20; ny=20; nz=20; s=hypermat([nx,ny,nz]);"
    "  x=linspace(-4.5,4.5,nx); xq=x''*ones(1,ny);"
    "  y=linspace(-4.5,4.5,ny); yq=ones(nx,1)*y;"
    "  z=linspace(-4.5,4.5,nz);"
    "  for i=1:nz; s(:,:,i)=1../((xq-2).^2+yq.^2+(z(i)-2)^2)+"+..
    "1../((xq+2).^2+yq.^2+(z(i)+2)^2); end"
    "  timer();[xx,yy,zz]=isosurf3d(x,y,z,-s,-.18); t=timer();"
    ]
    write(%io(2),democomm); execstr(democomm)
// the -0.2 surface gives a good example of the saddle point hole, btw
    aa=string(size(xx,2))+" triangles, "+string(t)+" sec --> "+..
       string(size(xx,2)/t)+" triang./sec"
    disp "  xbasc(); shadesurf(xx,yy,zz,1,0,60,60,''x@y@z'',[1 6 4])"
    xbasc();  shadesurf(xx,yy,zz,1,0,60,60,'x@y@z',[1 6 4])
    xx=aa;
    return
end;

if rhs==2 & type(x)==17 then
   s=x; s0=y; nx=size(s,1); ny=size(s,2); nz=size(s,3); 
   x=1:nx; y=1:ny; z=1:nz;
end 

if exists('s','local') & type(s)==17 then 
   datastruct='h';
   nx=size(s,1); ny=size(s,2); nz=size(s,3); 
   x=matrix(x,1,size(x,'*')); y=matrix(y,1,size(y,'*')); 
   z=matrix(z,1,size(z,'*'));
   if length(x)<nx | length(y)<ny | length(z)<nz then
     disp 'check the dimensions of the arguments!'; return
   end 
else
   datastruct='c'; 
   dcorvg=x; kvert=y; field=z; f0=s; 
   nvert=size(dcorvg,1); ncell=size(kvert,1)
   if size(field)<>[nvert,1] then
      disp 'wrong dimensions of the scalar field!'; return
   end
end


// Now, we have to generate a set of facelets which approximate
// the isosurface sought. My approach is to scan the hypermatrix
// cell by cell, and a) to identify the pattern of vertices > and
// < s0 (there are 23 possible patterns, which can appear in one
// of 48 possible orientations), then b) to generate a set of
// triangular facelets which represent the isosurface inside the cell.
// Ideally, the function inside the cell would be better
// approximated by shape functions. Shape functions evaluating
// to 1 in one vertex and to 0 in the other 7 would be of higher
// than linear order, and their isosurfacelets wouldn't be
// plane. My (to some extent arbitrary) approximation as
// triangular facelets whose vertices are the linear solutions
// along the sides of the cube, should at least be easier.
// I've found this method to work almost always, the only 
// exception being that it leaves a hole in some 2-cell saddle
// points (of type [[0 1;1 0],[1 0;0 1]]). Treating that would
// require to consider couples of adjacent cells, which is more
// complicate. Alternative approaches would of course be possible
// (e.g., only rectangles parallel to the coordinate planes
//  on the dual lattice,...).
//
//         8----7
//        /|   /|
//       5----6 |     reference order of vertices in the base
//       | 4--|-3     cell
//       |/   |/
//       1----2
//
//the following is obtained with [pp,par]=cubeperm() below, 
// and snippets like
//
//for i=1:48; write(%io(2),string(pp(i,1))+' '+string(pp(i,2))+' '+..
//          string(pp(i,3))+' '+string(pp(i,4))+' '+..
//          string(pp(i,5))+' '+string(pp(i,6))+' '+..
//          string(pp(i,7))+' '+string(pp(i,8))+'; ..' ); end
// time savings are minimal, but one never knows if they don't turn
// out useful
 
 
pp=[8 7 6 5 4 3 2 1; 8 7 3 4 5 6 2 1; 8 5 6 7 4 1 2 3; ..
    8 5 1 4 7 6 2 3; 8 4 3 7 5 1 2 6; 8 4 1 5 7 3 2 6; ..
    7 8 5 6 3 4 1 2; 7 8 4 3 6 5 1 2; 7 6 5 8 3 2 1 4; ..
    7 6 2 3 8 5 1 4; 7 3 4 8 6 2 1 5; 7 3 2 6 8 4 1 5; ..
    6 7 8 5 2 3 4 1; 6 7 3 2 5 8 4 1; 6 5 8 7 2 1 4 3; ..
    6 5 1 2 7 8 4 3; 6 2 3 7 5 1 4 8; 6 2 1 5 7 3 4 8; ..
    5 8 7 6 1 4 3 2; 5 8 4 1 6 7 3 2; 5 6 7 8 1 2 3 4; ..
    5 6 2 1 8 7 3 4; 5 1 4 8 6 2 3 7; 5 1 2 6 8 4 3 7; ..
    4 8 7 3 1 5 6 2; 4 8 5 1 3 7 6 2; 4 3 7 8 1 2 6 5; ..
    4 3 2 1 8 7 6 5; 4 1 5 8 3 2 6 7; 4 1 2 3 8 5 6 7; ..
    3 7 8 4 2 6 5 1; 3 7 6 2 4 8 5 1; 3 4 8 7 2 1 5 6; ..
    3 4 1 2 7 8 5 6; 3 2 6 7 4 1 5 8; 3 2 1 4 7 6 5 8; ..
    2 6 7 3 1 5 8 4; 2 6 5 1 3 7 8 4; 2 3 7 6 1 4 8 5; ..
    2 3 4 1 6 7 8 5; 2 1 5 6 3 4 8 7; 2 1 4 3 6 5 8 7; ..
    1 5 8 4 2 6 7 3; 1 5 6 2 4 8 7 3; 1 4 8 5 2 3 7 6; ..
    1 4 3 2 5 8 7 6; 1 2 6 5 4 3 7 8; 1 2 3 4 5 6 7 8];

ppar=[1 -1 -1  1  1 -1 -1  1  1 -1 -1  1 -1  1  1 -1 -1  1 ..
      1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  1 -1 -1 ..
      1  1 -1  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1];

// "parity" of the permutation of 1:8 above. This is important
// to discriminate the inside and the outside of the isosurface element

[ss,ppinv]=sort(-pp,'c'); 
// this takes up a negligible time, it's not worth to write
//  also ppinv as data


//// base patterns of 0 and 1 on the vertices
//b=zeros(23,8); nft=zeros(23);
//b(1,:)= [0 0 0 0 0 0 0 0];  nft(1)=0;    // 0 t
//b(2,:)= [1 0 0 0 0 0 0 0];  nft(2)=1;    // 1 t
//b(3,:)= [1 1 0 0 0 0 0 0];  nft(3)=2;    // 2 t
//b(4,:)= [1 0 1 0 0 0 0 0];  nft(4)=2;    // 2 t
//b(5,:)= [1 1 1 0 0 0 0 0];  nft(5)=3;    // 3 t
//b(6,:)= [1 0 0 0 0 0 1 0];  nft(6)=2;    // 2 t
//b(7,:)= [1 1 0 0 0 0 1 0];  nft(7)=3;    // 3 t
//b(8,:)= [1 0 1 0 0 0 0 1];  nft(8)=3;    // 3 t
//b(9,:)= [1 1 1 1 0 0 0 0];  nft(9)=2;    // 2 t
//b(10,:)=[1 1 0 0 0 0 1 1];  nft(10)=4;    // 4 t
//b(11,:)=[1 0 1 0 1 0 1 0];  nft(11)=4;    // 4 t
//b(12,:)=[1 0 1 0 0 1 0 1];  nft(12)=4;    // 4 t
//b(13,:)=[1 1 1 0 1 0 0 0];  nft(13)=4;    // 4 t
//b(14,:)=[1 1 1 0 0 1 0 0];  nft(14)=4;    // 4 t 
//b(15,:)=[1 1 1 0 0 0 0 1];  nft(15)=4;    // 4 t
//b(16:23,:)=abs(1-b(8:-1:1,:)); nft(16:23)=nft(8:-1:1);
//bb=b==1; 
//// now that patterns are inlined as data, the array b isn't
//// be needed anymore

nft=[0 1 2 2 3 2 3 3 2 4 4 4 4 4 4 3 3 2 3 2 2 1 0]
// number of triangles for each of the 23 basic patterns

//bp=zeros(23*48,8)==1;
//for l=1:23; bp(l:23:$,:)=matrix(bb(l,pp),48,8); end;
//bp1=bp(:,1); bp2=bp(:,2); bp3=bp(:,3); bp4=bp(:,4); 
//bp5=bp(:,5); bp6=bp(:,6); bp7=bp(:,7); bp8=bp(:,8); 
//// these bp1..bp8 make up the columns of the matrix of
//// all patterns permuted in all possible ways


// definition of the triangular facelets for each pattern:
//  (all but full cell/void cell, which are skipped)
// The entries of vtrian identify, for each triangle, the 
//  three sides of the cell on which a vertex lies. Each of 
//  these sides is identified by the couple of vertices of the
//  cell among which it runs. When the pattern requires less
//  than 4 triangles, the extra entries of vtrian are ones.
// vtrian=ones(45,6*4);
// for l=-23:23
//        nt=0
//        select abs(l)
//          case 2 then 
//             vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,1,5];  nt=nt+1 ,
//          case 3 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,5,2,3,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [1,5,2,6,2,3];  nt=nt+1 ,
//          case 4 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,1,5];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [3,7,3,4,2,3];  nt=nt+1 ,
//          case 5 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,4,1,5,2,6];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [1,4,2,6,3,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [3,7,3,4,2,6];  nt=nt+1 ,
//          case 6 then
//             vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,1,5];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [6,7,7,8,3,7];  nt=nt+1 ,
//          case 7 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,5,2,3,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [1,5,2,6,2,3];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [6,7,7,8,3,7];  nt=nt+1 ,
//          case 8 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,1,5];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [3,7,3,4,2,3];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [5,8,7,8,4,8];  nt=nt+1 ,
//          case 9 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,5,2,6,3,7];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [1,5,3,7,4,8];  nt=nt+1 ,
//          case 10 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,5,2,3,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [1,5,2,6,2,3];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [4,8,6,7,5,8];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [6,7,4,8,3,7];  nt=nt+1 ,
//          case 11 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,5,6];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [1,4,5,8,5,6];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [2,3,7,8,3,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [2,3,6,7,7,8];  nt=nt+1 ,
//          case 12 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,2,1,4,1,5];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [3,7,3,4,2,3];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [4,8,7,8,5,8];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [2,6,5,6,6,7];  nt=nt+1 ,
//          case 13 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,4,5,8,5,6];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [5,6,2,6,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [2,6,3,4,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [2,6,3,7,3,4];  nt=nt+1 ,
//          case 14 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,5,5,6,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [5,6,3,4,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [5,6,6,7,3,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [3,4,6,7,3,7];  nt=nt+1 ,
//          case 15 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,4,1,5,2,6];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [1,4,2,6,3,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [4,8,7,8,5,8];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [2,6,3,7,3,4];  nt=nt+1 ,
//          case 16 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,2,1,5,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [3,4,3,7,2,3];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [4,8,7,8,5,8];  nt=nt+1 ,
//          case 17 then,
//             vtrian(l+23,6*nt+(1:6)) = [2,3,1,5,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [1,5,2,6,2,3];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [3,7,7,8,6,7];  nt=nt+1 ,
//          case 18 then
//             vtrian(l+23,6*nt+(1:6)) = [1,2,1,5,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [3,7,7,8,6,7];  nt=nt+1 ,
//          case 19 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,4,2,6,1,5];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [1,4,3,4,2,6];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [3,4,3,7,2,6];  nt=nt+1 ,
//          case 20 then,
//             vtrian(l+23,6*nt+(1:6)) = [1,2,1,5,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [3,4,3,7,2,3];  nt=nt+1 ,
//          case 21 then,
//             vtrian(l+23,6*nt+(1:6)) = [2,3,1,5,1,4];  nt=nt+1 ,
//             vtrian(l+23,6*nt+(1:6)) = [2,3,2,6,1,5];  nt=nt+1 ,
//          case 22 then 
//             vtrian(l+23,6*nt+(1:6)) = [1,2,1,5,1,4];  nt=nt+1 ,
//        end
// // switch the order of vertices if the parity of the transformation was
// // negative - this way the 'upper' of any facelet points consistently
// //  in the direction where the function increases
//        if  l<0 & l>-23 then
//           aa=vtrian(l+23,[1,2,7,8,13,14,19,20]); 
//           vtrian(l+23,[1,2,7,8,13,14,19,20])=...
//             vtrian(l+23,[5,6,11,12,17,18,23,24]);
//           vtrian(l+23,[5,6,11,12,17,18,23,24])=aa
//        end
// end
// to produce the output for the inlining
//   for i=1:45;printf('%i ',vtrian(i,:)');end

vtrian = [ 
1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 2 3 1 5 2 6 2 3 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 1 2 2 3 3 7 3 4 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 2 6 1 4 2 6 3 4 1 4 2 6 3 7 3 4 1 4 1 5 1 2;
1 4 1 5 1 2 6 7 7 8 3 7 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 2 3 2 3 2 6 1 5 6 7 7 8 3 7 1 4 1 5 1 2;
1 4 1 5 1 2 2 3 3 7 3 4 5 8 7 8 4 8 1 4 1 5 1 2;
2 6 1 5 1 4 3 4 2 6 1 4 5 8 7 8 4 8 3 4 3 7 2 6;
1 4 5 6 1 5 1 4 3 4 5 6 3 4 6 7 5 6 3 7 6 7 3 4;
5 6 5 8 1 4 1 4 2 6 5 6 1 4 3 4 2 6 3 4 3 7 2 6;
1 5 1 4 1 2 2 3 3 4 3 7 5 8 7 8 4 8 6 7 5 6 2 6;
5 6 1 4 1 2 5 6 5 8 1 4 3 4 7 8 2 3 7 8 6 7 2 3;
1 4 2 3 1 5 2 3 2 6 1 5 5 8 6 7 4 8 3 7 4 8 6 7;
3 7 2 6 1 5 4 8 3 7 1 5 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 1 4 1 2 2 3 3 4 3 7 4 8 7 8 5 8 1 4 1 5 1 2;
1 4 2 3 1 5 2 3 2 6 1 5 3 7 7 8 6 7 1 4 1 5 1 2;
1 5 1 4 1 2 3 7 7 8 6 7 1 4 1 5 1 2 1 4 1 5 1 2;
2 6 1 5 1 4 3 4 2 6 1 4 2 6 3 4 3 7 1 4 1 5 1 2;
1 5 1 4 1 2 2 3 3 4 3 7 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 2 3 1 5 2 3 2 6 1 5 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 1 4 1 2 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 2 1 4 1 5 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 2 3 1 4 1 5 2 6 2 3 1 4 1 5 1 2 1 4 1 5 1 2;
1 2 1 4 1 5 3 7 3 4 2 3 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 1 5 2 6 1 4 2 6 3 4 3 7 3 4 2 6 1 4 1 5 1 2;
1 2 1 4 1 5 6 7 7 8 3 7 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 2 3 1 4 1 5 2 6 2 3 6 7 7 8 3 7 1 4 1 5 1 2;
1 2 1 4 1 5 3 7 3 4 2 3 5 8 7 8 4 8 1 4 1 5 1 2;
1 5 2 6 3 7 1 5 3 7 4 8 1 4 1 5 1 2 1 4 1 5 1 2;
1 5 2 3 1 4 1 5 2 6 2 3 4 8 6 7 5 8 6 7 4 8 3 7;
1 2 1 4 5 6 1 4 5 8 5 6 2 3 7 8 3 4 2 3 6 7 7 8;
1 2 1 4 1 5 3 7 3 4 2 3 4 8 7 8 5 8 2 6 5 6 6 7;
1 4 5 8 5 6 5 6 2 6 1 4 2 6 3 4 1 4 2 6 3 7 3 4;
1 5 5 6 1 4 5 6 3 4 1 4 5 6 6 7 3 4 3 4 6 7 3 7;
1 4 1 5 2 6 1 4 2 6 3 4 4 8 7 8 5 8 2 6 3 7 3 4;
1 2 1 5 1 4 3 4 3 7 2 3 4 8 7 8 5 8 1 4 1 5 1 2;
2 3 1 5 1 4 1 5 2 6 2 3 3 7 7 8 6 7 1 4 1 5 1 2;
1 2 1 5 1 4 3 7 7 8 6 7 1 4 1 5 1 2 1 4 1 5 1 2;
1 4 2 6 1 5 1 4 3 4 2 6 3 4 3 7 2 6 1 4 1 5 1 2;
1 2 1 5 1 4 3 4 3 7 2 3 1 4 1 5 1 2 1 4 1 5 1 2;
2 3 1 5 1 4 2 3 2 6 1 5 1 4 1 5 1 2 1 4 1 5 1 2;
1 2 1 5 1 4 1 4 1 5 1 2 1 4 1 5 1 2 1 4 1 5 1 2 ] 
// here I've set the extra vertices beyond 3*nt as repeated 
// 1 4 1 5 1 2 to avoid divisions by zero in vectorized 
// interpolation (doesn't really work yet)

////this is the snippet for generating the magic numbers below.
/// Performance improves if they are inlined as data.
//pfa=zeros(1,256); bfa=pfa; 

pow2=[128 64 32 16 8 4 2 1]';

//for l=0:255 
//       d2b=zeros(1,8)
//       for i=1:8
//         d2b(i)=int((l-d2b*pow2)/pow2(i))
//       end
//       sb8=d2b==1
//       pbf=find(bp1==sb8(1) & bp2==sb8(2) & bp3==sb8(3)..
//              & bp4==sb8(4) & bp5==sb8(5) & bp6==sb8(6)..
//              & bp7==sb8(7) & bp8==sb8(8) )
//      ppf=pbf(1)
//      pfa(l+1)=int((ppf-1)/23)+1; bfa(l+1)=ppf-pfa(l+1)*23+23
//// note that this also works since 48 and 23 happen to be prime
////  among themselves
//end
//disp(int8(pfa))
//disp(int8(bfa))
//
/// The explanation is: for all the 256 possibilities of having
/// each of the 8 vertices of the cell above/below the threshold,
///  specify which is the relevant triangle pattern (pf) and 
/// arrangement (bf)

pfa=[1 1 7 1 3 1 3 1 19 13 7 7 15 13 9 1 20 14 8 8 3 ..
  20 3 1 25 25 9 7 15 13 9 36 4 2 4 2 5 13 5 1 4 ..
  19 4 2 21 13 5 40 16 14 10 2 22 14 6 39 16 14 10 ..
  35 5 47 41 41 23 1 11 1 17 23 11 3 27 13 7 7 27 15 ..
  9 34 28 14 8 8 17 1 11 37 25 25 7 5 27 10 2 34 18 ..
  24 12 4 17 17 5 37 18 2 12 38 17 44 32 38 28 16 10 ..
  33 18 43 31 37 28 9 1 33 7 7 31 43 43 31 7 7 33 1 ..
  9 1 37 31 43 19 33 13 21 28 38 32 44 20 38 32 3 18 ..
  37 25 37 17 37 12 24 18 34 2 10 2 5 1 5 25 37 31 4 ..
  17 33 8 14 28 34 14 22 27 34 7 13 27 38 11 23 17 1 ..
  11 1 23 41 41 47 1 35 35 23 16 39 39 39 22 27 10 14 ..
  16 40 40 40 21 42 4 19 4 37 5 13 5 2 4 2 4 36 36 ..
  24 15 17 9 25 25 41 3 20 3 8 8 14 20 28 9 13 15 7 ..
  7 13 19 1 3 1 3 1 7 1 1 ] 
 
bfa=[1 2 2 3 2 4 3 5 2 3 4 5 3 5 5 9 2 3 4 5 6 7 7 ..
  13 4 5 8 14 7 13 15 19 2 4 3 5 4 8 5 14 6 7 7 13 ..
  7 15 13 19 3 5 5 9 7 15 13 19 7 13 15 19 11 17 17 ..
  21 2 6 4 7 3 7 5 13 4 7 8 15 5 13 14 19 4 7 8 15 ..
  7 11 15 17 8 15 12 16 15 17 16 20 3 7 5 13 5 15 9 ..
  19 7 11 15 17 13 17 19 21 5 13 14 19 13 17 19 21 15 ..
  17 16 20 17 18 20 22 2 4 6 7 4 8 7 15 3 5 7 13 5 ..
  14 13 19 3 5 7 13 7 15 10 17 5 9 15 19 13 19 17 21 ..
  4 8 7 15 8 12 15 16 7 15 10 17 15 16 17 20 5 14 13 ..
  19 15 16 17 20 13 19 17 21 17 20 18 22 3 7 7 10 5 ..
  15 13 17 5 13 15 17 9 19 19 21 5 13 15 17 13 17 17 ..
  18 14 19 16 20 19 21 20 22 5 15 13 17 14 16 19 20 ..
  13 17 17 18 19 20 21 22 9 19 19 21 19 20 21 22 19 ..
  21 20 22 21 22 22 23 ] 

// also this sits better outside of the loops:
v=ones(255,24);
for l=(2:255)
  v(l,:)=ppinv(pfa(l),vtrian(bfa(l)*ppar(pfa(l))+23,:));
end

nfta=nft(bfa(1:256));

// now scan every cube of the 3d hypermat

nf=0

// a few definitions brought out of the loops
u1=int((0:35)/3 +1)*2-1; u2=u1+1;
v1=1:2:23; 
//v2=v1+1; v12=[v1,v2]; va=1:12; vb=va+12;
uu1=4*u1; uu2=4*u2; 
uv2=[v1*4+1;v1*4+2;v1*4+3]; uv1=uv2-4;

xyz=[];
// to dimension xyz maximally (e.g. (9,4*(nxm)*(nym)*(nzm)) ) 
// from start would be a waste of memory, but to grow it for
// every added triangle would be quite slow. I think that a good 
// compromise is to resize xx,yy,zz at each step of the i loop
// (there xyz needs to grow only from (9,nt-1) to (9,4*nxm*nym+nt-1) )


nt=0

if datastruct=="h" then
  nxm=nx-1; nym=ny-1; nzm=nz-1
  nx1=1:nxm; ny1=1:nym; nz1=1:nzm; ny2=ny1+1; nz2=nz1+1;
  u=1:3; nyzm=nym*nzm; Ny=1:ny; Nz=1:nz; js=(0:7)*nym;
  yy8=[y(ny1);y(ny1);y(ny2);y(ny2);y(ny1);y(ny1);y(ny2);y(ny2)]'
  zz8=[z(nz1);z(nz1);z(nz1);z(nz1);z(nz2);z(nz2);z(nz2);z(nz2)]'
// sort the points of the cube in canonical order - the
//  outer in the loop the faster (?)
  for i=nx1
// I scan the hypermatrix with i outer, try to collapse j and k
   i1=i+1;
   x8=x([i,i1,i1,i,i,i1,i1,i])
   s8i=matrix(s(i,Ny,Nz),ny,nz); //s8i=s8i(:,:)
   s8i1=matrix(s(i1,Ny,Nz),ny,nz); //s8i1=s8i1(:,:)
// s8i1(:,:) etc instead of s8i1 for compatibility with scilab 2.4.1
   ss8=double([s8i(ny1,nz1); s8i1(ny1,nz1); s8i1(ny2,nz1); s8i(ny2,nz1); ..
             s8i(ny1,nz2); s8i1(ny1,nz2); s8i1(ny2,nz2); s8i(ny2,nz2)])'-s0; 
// this matrix ss8 now contains all the necessary values of s in the
// planes i and i+1. I play index tricks, and try to minimize the
// use of hypermatrices, as calculations with them are considerably
// slower. 
   ll=matrix(matrix(bool2s(ss8>0),nyzm,8)*pow2+1,nzm,nym);
// Recognize which pattern of >0 and <0 appears in each cell of 
// this plane: boolean((ny-1)*(nz-1),8) --> integers in a snap, 
// for the whole plane.
// Usually most of the cells have all 8 values either >s0 or <s0,
// and don't need to be considered for isosurfacelets. So the following
//  loop is only on those cells which have some vertices on 
//  opposite sides of the s0 divider.
   [kk,jj]=find(ll>1 & ll<256); njk=length(jj); 
// making space in xyz
   xyz=[xyz(1:9*nt);zeros(36*njk,1)];
   for q=1:njk
       j=jj(q); k=kk(q);
       l=ll(k,j)
       nftbf=nfta(l);
// pick up the relevant vertices for constructing triangles
// and generate the triangular facelets
       X=[x8;yy8(j,:);zz8(k,:);ss8(k,js+j)]
//   X 4x8 stores {x,y,z,s-s0} of the 8 vertices of the cell.
//timer()
       Y=X(:,v(l,:))  // Y(4,24)
//the following criptic lines interpolate linearly along the relevant
// sides, and return nftbf triples of x,y,z, vertices of the triangles.
// Matrix flattening is used to increase speed. Index arrays like
// u,u1,u2,v1,v2,uu1,uu2,uv1,uv2, have been defined above.
       S1=Y(uu1); S2=Y(uu2);
       D=S2-S1; N=S2.*Y(uv1)-S1.*Y(uv2);
// denominators are never zero if Y is formed with the right points
//  and if only the first nftbf triangles are computed
       uu=1:9*nftbf;
       xyz(9*nt+uu)=N(uu)./D(uu)
//t=t+timer()
// There is a redundancy of operations, as points are
// always aligned (have two equal coordinates), so will be their
// mean point, and there would be no need to compute it. I'm afraid 
// that any catch of that will only overburden the snippet.
       nt=nt+nftbf
   end
  end
else
  ll=matrix(bool2s(field(kvert)>f0),ncell,8)*pow2+1
  jj=find(ll>1 & ll<256);
  xyz=zeros(9*sum(nfta(ll(jj))),1);
  for j=jj
       l=ll(j); k=kvert(j,:); nftbf=nfta(l);
       X=[dcorvg(k,1)';dcorvg(k,2)';dcorvg(k,3)';field(k)'-f0]
//   X 4x8 stores {x,y,z,s-s0} of the 8 vertices of the cell.
       Y=X(:,v(l,:))  // Y(4,24)
       S1=Y(uu1); S2=Y(uu2);
       D=S2-S1; N=S2.*Y(uv1)-S1.*Y(uv2);
       uu=1:9*nftbf;
       xyz(9*nt+uu)=N(uu)./D(uu)
       nt=nt+nftbf
  end
end
// output only the xx,yy,zz needed
u=1:nt
xyz=matrix(xyz,9,-1)
xx=xyz(1:3:7,u); yy=xyz(2:3:8,u); zz=xyz(3:3:9,u); 


//write(%io(2),'time spent in the selected routine:'+string(t))

return



//function [pp,ppar]=cubeperm()
//// all the topologically equivalent permutations of the vertices:
////  (enumerating is less clever than thinking of an algorithm)
//// ( I'm dummy as they are just all the elements of a discrete SO(3) )
////
//p=zeros(162,8); par=zeros(162,1);
//p(1,:)= [1 2 3 4 5 6 7 8]; 
//// around z
//p(2,:)= [2 3 4 1 6 7 8 5];
//p(3,:)= [3 4 1 2 7 8 5 6];
//p(4,:)= [4 1 2 3 8 5 6 7];
//// around x
//p(5,:)= [4 3 7 8 1 2 6 5];
//p(6,:)= [8 7 6 5 4 3 2 1];
//p(7,:)= [5 6 2 1 8 7 3 4];
//// around y
//p(8,:)= [2 6 7 3 1 5 8 4];
//p(9,:)= [6 5 8 7 2 1 4 3];
//p(10,:)=[5 1 4 8 6 2 3 7]; par(1:10)=1;
//// reflect xy
//p(11:20,:)=p(1:10,[5:8,1:4]);  par(11:20)=-1;
//// reflect yz
//p(21:30,:)=p(1:10,[2 1 4 3 6 5 8 7]);  par(21:30)=-1;
//// reflect xz
//p(31:40,:)=p(1:10,[4 3 2 1 8 7 6 5]);  par(31:40)=-1;
//// this is still missing
//p(41,:)=[7 3 2 6 8 4 1 5];  par(41)=1;
////these are 27 unique -let's try to add more
//p(42:81,:)=p(2:41,p(2,:));  par(42:81)=par(2:41);
//p(82:121,:)=p(2:41,p(5,:));  par(82:121)=par(2:41);
//p(122:161,:)=p(2:41,p(8,:));  par(122:161)=par(2:41);
//// not enough, still this
//p(162,:)=[8 5 1 4 7 6 2 3];   par(162)=1;
//// now there are 48 unique (take any of the 8 vertices as first -
////  then you have 3! ways to permute it's adjacent nodes)
//// now I sort and uniq them via a string sort
//ps=string(p(:,1))+" "+string(p(:,2))+" "+string(p(:,3))+" "+string(p(:,4))..
//   +" "+string(p(:,5))+" "+string(p(:,6))+" "+string(p(:,7))+..
//   " "+string(p(:,8))
//[ps,nn]=gsort(ps); par=par(nn); pss=" ";
//pss(1)=ps(1); ppar(1)=par(1);  j=1;
//for i=1:size(p,1)
//   if ps(i)<>pss(j) then pss(j+1)=ps(i); ppar(j+1)=par(i); j=j+1; end
//end
//pp=evstr(pss); clear ps; clear p; clear par;
//
//return


endfunction


function c=shadecomp(xx,yy,zz,l,shine,m)

// Computes facelet colors for subsequent rendering with
// plot3d. Having the access to the computed colors allows
// further transformations, and assignation of faces to different
// segments of stacked colormaps.
//
// c(1,size(xx,2)) for normal plot3d(xx,yy,list(zz,c)) rendering,
//  while if m=2 (goraud) c has the same size of xx,yy,zz
//  for rendering with Stephane Mottelet's interpolated color plot3d
//  extension


[lhs,rhs]=argn(0);

if rhs==0 then
  return
end
if ~exists('l','local') then l=[1,1,1]; end
if ~exists('shine','local') then shine=1; end
if ~exists('m','local') then m=1; end

ns=size(xx,1); nf=size(xx,2)
i1=1:ns; i2=[2:ns,1]; i3=[3:ns,1,2];

nn1=-((yy(i1,:)-yy(i2,:)).*(zz(i2,:)-zz(i3,:))-...
      (yy(i2,:)-yy(i3,:)).*(zz(i1,:)-zz(i2,:)));
//if ns>3 then
  nn2=((xx(i1,:)-xx(i2,:)).*(zz(i2,:)-zz(i3,:))-...
       (xx(i2,:)-xx(i3,:)).*(zz(i1,:)-zz(i2,:)));
  nn3=-((xx(i1,:)-xx(i2,:)).*(yy(i2,:)-yy(i3,:))-...
        (xx(i2,:)-xx(i3,:)).*(yy(i1,:)-yy(i2,:)));
//else
//   nn2=nn1; nn3=nn1;
//end

// nn1,nn2,nn3 are 3 matrices of size (ns,nf), which store the
//  3 components of the normal at each vertex.
// for triangular (ns=3) faces this calculation is redundant,
// since triangles are always planar and the three vertex
// normals will be identical


[degf1,degf2]=find(abs(nn1)+abs(nn2)+abs(nn3)<10*%eps);
// this can happen for instance if there are coincident vertices;
// it shouldn't, if xx, yy, zz are constructed properly, but
// I want shadesurf to get through it anyway
// the following is capable to handle two consecutive coincident
// vertices. Three or more consecutive coincident vertices are
// partially handled, and a division by zero will result below.
if degf1<>[] then
  q1=degf1+(degf2-1)*ns; q2=modulo(degf1+1,ns)+1+(degf2-1)*ns
  nn1(q1)=nn1(q2); nn2(q1)=nn2(q2); nn3(q1)=nn3(q2)
// I assume that in this case at least the second next vertex of
// the face is not degenerate (if two vertices coincide, then
// two consecutive normals are null)
end

//nn3(degf1,degf2)=1;  // this is bad but works as last resort
nn=sqrt(nn1.^2+nn2.^2+nn3.^2); 
nn(nn==0)=1; // this is a last resort for null faces, with more than
             // two coinciding vertices, or faces degenerate to a
             // segment (e.g., triangles with a zero side)

//cc=sqrt(nn1.^2+nn2.^2+nn3.^2);
// color proportional to the slope

//cc=1../max(a*nn1+b*nn2,1);
// color inversely proportional to the lightened side

c=(l(1)*nn1+l(2)*nn2+l(3)*nn3)./nn./sqrt(l*l');
c=((c+1)/2).^shine;
// color proportional to the cosine of the angle (local normal)^(sun)
// the direction of the sun is [l(1), l(2), l(3)]

clear nn nn1 nn2 nn3

if abs(m)==1 then
  c=mean(c,'r')
// flat shading -> only one c per face is output, the average of
// all the c values
end

if abs(m)==2
// if facelets are triangular, they are obviously planar
// I construct a vertex c and try to go goraud
//   if ns==4 then
//// recognize if the vertices are laid on a structured grid:
////  try if there is a subset of faces set side to side. 
//       stru1=find(xx(4,1:(nf-1))==xx(1,2:nf) & ..
//            yy(4,1:(nf-1))==yy(1,2:nf) & zz(4,1:(nf-1))==zz(1,2:nf) )
//       stru2=find(xx(2,1:(nf-1))==xx(1,2:nf) & ..
//            yy(2,1:(nf-1))==yy(1,2:nf) & zz(2,1:(nf-1))==zz(1,2:nf) )
//   end
//   if %f then
//     disp('structured!')
//   end
// lex_sort seems the best solution to look for adjacencies
//  arrays are silently flattened here
   [xyz,k]=lex_sort([xx(:),yy(:),zz(:)]);
   clear xx yy zz
   q=[0,find( or(xyz(1:$-1,:)~=xyz(2:$,:),'c') ), ns*nf];
   for i=1:length(q)-1
     qq=k(q(i)+1:(q(i+1)))
     c(qq)=mean(c(qq))
   end
end

// range expansion
if m<0 then
  if max(c)-min(c)>2*%eps then
    c=(c-min(c))/(max(c)-min(c))
  else
// this can happen if the surface is a plane, and I want this to
//  be handled
   c=ones(size(c,1),size(c,2));
  end
end


return

endfunction

function oplot3d(data,nc,theta,alpha,leg,flag,ebox)

// data=list(xx1,yy1,zz1,c1,icontext1,xx2,yy2,zz2,c2,icontext2,...)
// nc vector of number of colors in the stack
// to make things easier to begin with, let's suppose that all
// the objects have facelets with the same number of sides

[lhs,rhs]=argn(0);

if ~exists('nc','local') then nc=xget('lastpattern'); end
// usually one wants to provide nc, this is a last resource escape
if ~exists('theta','local') then theta=45; end
if ~exists('alpha','local') then alpha=35; end
if ~exists('leg','local') then leg='X@Y@Z'; end
if ~exists('flag','local') then flag=[-1 2 4]'; end
if ~exists('ebox','local') then ebox=[0 0 0 1 1 1]'; end

if rhs==0 | type(data)<>15 then
 write(%io(2),..
  ' The first argument of oplot3d has to be a list of xx,yy,zz,c'+..
  ',icontext  tuples!')
 return
end

// scanning the argument "data" for valid entries
lobj=[]; nobj=0; nfj=[]; ncj=[]; ndata=length(data); j=1;
while j<=ndata
   if type(data(j))==15 then
      if length(data(j))==4 then data(j)(5)=1; end
      if length(data(j))<>5 then
         write(%io(2),..
            'graphic object #'+string(nobj+1)+' is a list, but not a 5-tuple!')
         return
      end
      nobj=nobj+1;
      lobj=[lobj,%t]
      nfj=[nfj,size(data(j)(1),1)]
      ncj=[ncj,size(data(j)(4),1)]
      j=j+1
   else
      if ndata < j+4 then
        write(%io(2),..
            'last graphic object is not a 5-tuple!')
        return
      end    
      if ~(type(data(j))==1 & type(data(j+1))==1 &..
           type(data(j+2))==1 & type(data(j+3))==1 &..
           type(data(j+4))==1) then
         write(%io(2),..
            'graphic object #'+string(nobj+1)+' is not a 5-tuple of reals!')
         return
      else          
        nobj=nobj+1;
        lobj=[lobj,%f]
        nfj=[nfj,size(data(j),1)]
        ncj=[ncj,size(data(j+3),1)]
        j=j+5
      end
   end
end

// find the maximum number of sides of all the faceted objects 
nf=max(nfj)
ncv=max(ncj)

if or(ncj<>1 & ncj<>nfj) then
 write(%io(2),..
  '  something wrong with the color arrays dimensions:')
  for k=1:nobj
    if ncj(k)<>1 & ncj(k)<>nfj(k) then
       write(%io(2),'object '+string(k)+' has facelets with '+..
            string(nfj(k))+' sides, but the color array has '+..
            string(ncj(k))+' corresponding entries')
    end
  end
 return
end

// Now we construct a single set xx,yy,zz,cc for all the objects.
// the number of vertices is augmented to nf if nf(j)<nf. This
// allows concatenation of xx,yy,zz; a little memory consuming,
// but easier to code than calling plot3d separately for each object
// Besides, a single call presents no visibility issues.
// One object with vertex colors will force all to have vertex colors.
xx=[];yy=xx;zz=xx;cc=xx;
j=1;
for k=1:nobj
  if lobj(k) then
    xx=[xx,data(j)(1)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
    yy=[yy,data(j)(2)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
    zz=[zz,data(j)(3)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
    ic=min(max(data(j)(5),1),length(nc))
    cc=[cc,data(j)(4)([1:ncj(k),ncj(k)*ones(1,nf-ncj(k))],:)..
       *(nc(ic)-1)+sum(nc(1:(ic-1)))+1]
    j=j+1
  else
    xx=[xx,data(j)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
    yy=[yy,data(j+1)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
    zz=[zz,data(j+2)([1:nfj(k),nfj(k)*ones(1,nf-nfj(k))],:)]
    ic=min(max(data(j+4),1),length(nc))
    cc=[cc,data(j+3)([1:ncj(k),ncj(k)*ones(1,nf-ncj(k))],:)..
        *(nc(ic)-1)+sum(nc(1:(ic-1)))+1]
    j=j+5
  end
end

clear data  // it still occupies memory, not needed any more

plot3d1(xx,yy,list(zz,cc),theta,alpha,leg,flag,ebox)

return

endfunction


function [xx,yy,zz]=sphere(x0,r,n)
// expanded from SCI/surface/surfaces.sci
  [lhs,rhs]=argn(0);
  if rhs<3 then n=16; end
  if rhs<2 then r=1; end
  if rhs<1 then x0=[0,0,0]; end

  if size(x0)==[3,1] then x0=x0'; end
  if size(x0,2)<>3 then
     disp('wrong size of x0'); return
  end
  ns=size(x0,1)
  if length(r)<>ns then r=r(1)*ones(ns,1); end 

  vn=2*n

// prototype sphere
  u = linspace(-%pi/2,%pi/2,n);
  v = linspace(0,2*%pi,vn);  
  x= cos(u)'*cos(v);
  y= cos(u)'*sin(v);
  z= sin(u)'*ones(v);

  in=1:(n-1); inp=2:n; in2=1:(vn-1)
  xxx=[matrix(x(in,in2+1),1,(n-1)*(vn-1));
       matrix(x(in,in2),1,(n-1)*(vn-1));
       matrix(x(inp,in2),1,(n-1)*(vn-1));
       matrix(x(inp,in2+1),1,(n-1)*(vn-1))]
  yyy=[matrix(y(in,in2+1),1,(n-1)*(vn-1));
       matrix(y(in,in2),1,(n-1)*(vn-1));
       matrix(y(inp,in2),1,(n-1)*(vn-1));
       matrix(y(inp,in2+1),1,(n-1)*(vn-1))]
  zzz=[matrix(z(in,in2+1),1,(n-1)*(vn-1));
       matrix(z(in,in2),1,(n-1)*(vn-1));
       matrix(z(inp,in2),1,(n-1)*(vn-1));
       matrix(z(inp,in2+1),1,(n-1)*(vn-1))]

 
//multiplication of spheres

   nf=size(xxx,2);
   xx=zeros(4,nf*ns); yy=xx; zz=xx
   for i=1:ns
     xx(:,((i-1)*nf+1):i*nf)=xxx*r(i)+x0(i,1)
     yy(:,((i-1)*nf+1):i*nf)=yyy*r(i)+x0(i,2)
     zz(:,((i-1)*nf+1):i*nf)=zzz*r(i)+x0(i,3)
   end

return

endfunction

function [xx,yy,zz]=spaghetti(x,y,z,w,nf)

[lhs,rhs]=argn(0);

if rhs==0 then
  disp('demo of spaghetti(x,y,z,w)');disp('');
  comm=[..
     'h=(-25:25)''/20; s=(tanh(h.^2/2)+1)/2; alpha=(-%pi:0.8:%pi);';..
     'nl=length(s); na=length(alpha);';..
     'x=zeros(nl,na); y=x; z=x; w=zeros(nl,3*na);';..
     'for i=1:na;';..
     '   phi=alpha(i);';..
     '   x(:,i)=s*cos(phi); y(:,i)=h; z(:,i)=s*sin(phi);';..
     'end';..
  'xbasc(); [xx,yy,zz]=spaghetti(x,y,z,0.08); shadesurf(xx,yy,zz,10);']
  write(%io(2),comm)
  execstr(comm)
  xtitle('demo for spaghetti()')
  xx=[];yy=[];zz=[];
  return
end

xx=[];

if rhs<5 then nf=11; end

if rhs<3 then 
    disp('spaghetti() wants one or more trajectories x,y,z !')
    return
end

if rhs==3 then w=(max(y)-min(y))/20; end  //just a given value

if size(x)~=size(y) | size(z)~=size(y) | size(x)~=size(z) then
   disp('inconsistency in x,y,z lengths')
   return
end

np=size(x,1); nv=size(x,2);
if np==1 then 
   disp('cannot make spaghetti of single points!')
   return
end

if size(w)==[1,np] then
  w=w'
end
if size(w)==[np,1] then
  w=w*ones(1,nv)
end

if size(w,1)<>np | size(w,2)<>nv then 
   w=w(1)*ones(np,nv);
end

if np==2 then
// "arrows3d" mode: I invent a middle point, so the following
//  assignments work
  x=[x(1,:); (x(1,:)+x(2,:))/2; x(2,:)];
  y=[y(1,:); (y(1,:)+y(2,:))/2; y(2,:)];
  z=[z(1,:); (z(1,:)+z(2,:))/2; z(2,:)];
  np=3
  w=[w(1,:);w]
end

fd=[cos(2*%pi*(1:nf)/nf);sin(2*%pi*(1:nf)/nf)]

xx=zeros(4,nf*np*nv); yy=xx; zz=yy;  // only (np-1)*nv tubelets, but
                                     // the last arrowhead requires
                                     // more facelets


for j=1:nv
//array of versors of the segments
   un=zeros(np-1,3);
   un=[x(2:np,j)-x(1:(np-1),j),y(2:np,j)-y(1:(np-1),j),..
       z(2:np,j)-z(1:(np-1),j)];
   nn=sqrt(sum(un.^2,'c')); 
// take care of possible coincident points: assign an un<>0
// even to those coincident
   isep=find(nn>10*%eps);
   if isep<>[] then   
// if all the points coincide, don't even try to mend anything
// (a division by 0 will result soon)
     un(1:(isep(1)-1),1)=un(isep(1),1);
     un(1:(isep(1)-1),2)=un(isep(1),2);
     un(1:(isep(1)-1),3)=un(isep(1),3);
     nn(1:(isep(1)-1))=nn(isep(1))
//so if the first points were coincident, they take the un of their
//  followers
   else
     write(%io(2),"all the points of line "+string(j)+" coincide!")
     break
   end
// now each nn=0 has for sure a predecessor <>0
   for i=find(nn<=10*%eps); 
     un(i,:)=un(i-1,:); nn(i)=nn(i-1);
   end
// the loop above is not vectorizable! Feedback! 
   nn=[nn,nn,nn];
   un=un./nn;
//compute 2 local normals to each point of the trail
 //intermediate points: first normal=bisectrix of the vertex
   N1=zeros(np,3);
   N1(2:(np-1),:)=un(1:(np-2),:)-un(2:(np-1),:); 
 //extremes: equal that at the next (previous) point
   N1(1,:)=-N1(2,:); N1(np,:)=N1(np-1,:);
//really no idea of why N1(1,:)=-N1(2,:) with minus, but solves a bug.
 //now, we could have N1(:,i)=[0;0;0] either for coincident
 // points or for colinear segments. Let's take care of it.
 // We cannot just set N1 to an arbitrary direction, because
 //  that could be too different from its neighbor.
   nN1=sqrt(sum(N1.^2,'c'));
   if find(abs(nN1)>10*%eps)==[] then
 //if _all_ the points are colinear (this can happen in arrow mode)
      if find(abs(un(:,1))>10*%eps | abs(un(:,2))>10*%eps)==[] then
   //if the whole trail is parallel to the z axis
         N1=[ones(np,1),zeros(np,2)]
      else
         N1(2:np,:)=[un(:,2),-un(:,1),zeros(np-1,1)]       
   //this is for sure perpendicular to un 
         N1(1,:)=N1(2,:); N1(np,:)=N1(np-1,:);
      end
      nN1=sqrt(sum(N1.^2,'c')); // recalculate for the points which
                               // have been taken care of
   else
  //now, if not all points are colinear, lets put the missing N1s
  // (for those which are still colinear). Let's start from the
  // beginning of the trail:
     ibent=find(nN1>10*%eps);
     N1(1:(ibent(1)-1),1)=N1(ibent(1),1);
     N1(1:(ibent(1)-1),2)=N1(ibent(1),2);
     N1(1:(ibent(1)-1),3)=N1(ibent(1),3);
     nN1(1:(ibent(1)-1))=nN1(ibent(1))
  // now each N1=0 has for sure a predecessor <>0
     for i=find(nN1<=10*%eps);
       N1(i,:)=N1(i-1,:); nN1(i)=nN1(i-1);
     end
 // still one thing to do - if the trail is even a little zigzag,
 //  neighboring points can have almost opposite N1. Let's flip
 //  those which have a negative projection on their predecessor
     P1=sign(N1(1:(np-1),1).*N1(2:np,1)+N1(1:(np-1),2).*N1(2:np,2)+..
              N1(1:(np-1),3).*N1(2:np,3))
     iflip=find(cumprod(P1)<0)+1    // I'm really clever!
     N1(iflip,:)=-N1(iflip,:)
   end
//normalization
   N1=N1./[nN1,nN1,nN1];
 //intermediate points: second normal=binormal to the previous
   N2=zeros(np,3);
   N2(2:(np-1),1)=un(1:(np-2),2).*N1(2:(np-1),3)-..
                   un(1:(np-2),3).*N1(2:(np-1),2);
   N2(2:(np-1),2)=un(1:(np-2),3).*N1(2:(np-1),1)-..
                   un(1:(np-2),1).*N1(2:(np-1),3);
   N2(2:(np-1),3)=un(1:(np-2),1).*N1(2:(np-1),2)-..
                   un(1:(np-2),2).*N1(2:(np-1),1);   
 //extremes: equal that at the next (previous) point
   N2(1,:)=N2(2,:); N2(np,:)=N2(np-1,:);
 //normalization
   nN1=sqrt(sum(N2.^2,'c'));
   nN1(find(abs(nN1)<%eps))=1;
   N2=N2./[nN1,nN1,nN1];
//Sometimes the intrinsic twist of the line is such, that it is better
// to further rotate N1 and N2 of an integer number of quarter of turns
// around their commom normal, i.e. send (N1,N2) --> (+-N2,+-N1)
// in order to minimize the angles between corresponding normals of
// neighboring points. This should be done here.

// TO DO

//generate a vector of vertices of the facelet, still to sort
   xt=zeros(np,nf); yt=xt; zt=yt; 
   for k=1:nf  // could I vectorize this?
     xt(:,k)=x(:,j)+(N1(:,1)*fd(1,k)+N2(:,1)*fd(2,k)).*w(:,j)
     yt(:,k)=y(:,j)+(N1(:,2)*fd(1,k)+N2(:,2)*fd(2,k)).*w(:,j)
     zt(:,k)=z(:,j)+(N1(:,3)*fd(1,k)+N2(:,3)*fd(2,k)).*w(:,j)
   end
// generate the faces of the tube
   k1=1:nf; k2=[2:nf,1]; np2=1:(np-2); np2f=(np-2)*nf;
   xx(:,(j-1)*np*nf+(1:(np-2)*nf))=..
      [matrix(xt(np2,k1),1,np2f);matrix(xt(np2+1,k1),1,np2f);..
       matrix(xt(np2+1,k2),1,np2f);matrix(xt(np2,k2),1,np2f)] 
   yy(:,(j-1)*np*nf+(1:(np-2)*nf))=..
      [matrix(yt(np2,k1),1,np2f);matrix(yt(np2+1,k1),1,np2f);..
       matrix(yt(np2+1,k2),1,np2f);matrix(yt(np2,k2),1,np2f)] 
   zz(:,(j-1)*np*nf+(1:(np-2)*nf))=..
      [matrix(zt(np2,k1),1,np2f);matrix(zt(np2+1,k1),1,np2f);..
       matrix(zt(np2+1,k2),1,np2f);matrix(zt(np2,k2),1,np2f)] 
// last segment: arrowhead
   np1=np-1; xc=zeros(1,nf); yc=xc; zc=yc; xp=yc; yp=yc; zp=yc;
   xc(k1)=-x(np1,j)+2*xt(np1,k1)
   yc(k1)=-y(np1,j)+2*yt(np1,k1)
   zc(k1)=-z(np1,j)+2*zt(np1,k1)
   xp(k1)=x(np,j)
   yp(k1)=y(np,j)
   zp(k1)=z(np,j)
   xx(:,(j-1)*np*nf+(((np-2)*nf+1):(np-1)*nf))=..
      [xt(np1,k1);xc(k1);xc(k2);xt(np1,k2)] 
   yy(:,(j-1)*np*nf+(((np-2)*nf+1):(np-1)*nf))=..
      [yt(np1,k1);yc(k1);yc(k2);yt(np1,k2)] 
   zz(:,(j-1)*np*nf+(((np-2)*nf+1):(np-1)*nf))=..
      [zt(np1,k1);zc(k1);zc(k2);zt(np1,k2)] 
   xx(:,(j-1)*np*nf+((np1*nf+1):np*nf))=..
      [xc(k2);xc(k1);xp(k1);xp(k2)] 
   yy(:,(j-1)*np*nf+((np1*nf+1):np*nf))=..
      [yc(k2);yc(k1);yp(k1);yp(k2)] 
   zz(:,(j-1)*np*nf+((np1*nf+1):np*nf))=..
      [zc(k2);zc(k1);zp(k1);zp(k2)] 
//note that only putting equal the 3rd and 4th point, my
// shadesurf works (trick)     
end

endfunction


function nc=setcmap(i,nc,r)
//
// syntax:  setcmap(i,nc,r),  setcmap(i,nc),  setcmap(i)
//
//  i : index of my predefined colormaps
//      the list is printed if i is out of range
//      Negative i gives the complementar colormap
//  nc: number of colors - useful for limited monitors
//      or private colormaps - 32 gives good results
//  r:  the window is redrawn afterwards if r<>0
//      The results are poor if nc has been changed
//
[rhs,lhs]=argn(0);
if lhs==0 then r=0; nc=xget("lastpattern"); i=9999; end
if lhs==1 then r=0; nc=int(xget("lastpattern")/length(i)); end
if lhs==2 then r=0; end
if nc<0 then nc=32; end

i=matrix(i,length(i),1)
//nc=[matrix(nc,length(nc),1);nc($)*ones(length(i)-length(nc),1)]
//would be nice, but as the function is written now, nc has to be a
// scalar

// Here are some colormaps: (crooked way to define them indeed -
//  but it was the first one I figured out long ago -
k=1;
cname(k)='BlackWhite';
     execstr(cname(k)+"=linspace(0,1,nc)''*[1,1,1];") 
k=k+1;
cname(k)='Fluorescine'; 
    execstr(cname(k)+"=[((1:nc).^2)/nc;1:nc;((1:nc).^2)/nc]''/nc;") 
k=k+1;
cname(k)='Caramel'; 
     execstr(cname(k)+"=[(0:nc-1).^0.67*nc^0.33;1:nc;...
    ((1:nc).^3)/nc^2]''/nc;") 
k=k+1;
cname(k)='Cappuccino'; execstr(cname(k)+"=...
   [(0:nc-1).^0.8*nc^0.2;(1:nc).^2/nc;((1:nc).^3)/nc^2]''/nc;") 
k=k+1;
cname(k)='Chocolate'; execstr(cname(k)+"=...
   [(0:nc-1).^0.8*nc^0.2;(1:nc).^2/nc;sin(3*%pi*(1:nc)/nc)/2+1]''/nc;") 
k=k+1;
cname(k)='Hot'; execstr(cname(k)+"=...
  [min(1,max((2*(1:nc)/nc),0));...
   min(1,max((2.5*(1:nc)/nc)-1,0));...
   min(1,max((3*(1:nc)/nc)-2,0))]'';") 
k=k+1;
cname(k)='Hot2';
// this is copied from hotcolormap of scilab 2.4.1
 execstr(cname(k)+"=...
   [(1:fix(3/8*nc))''/fix(3/8*nc)  zeros(fix(3/8*nc),1) ...
                                         zeros(fix(3/8*nc),1); ...
    ones(fix(3/8*nc),1)  (1:fix(3/8*nc))''/fix(3/8*nc)  ...
                                         zeros(fix(3/8*nc),1); ...
    ones((nc-2*fix(3/8*nc)),1)  ones((nc-2*fix(3/8*nc)),1)  ...
           (1:(nc-2*fix(3/8*nc)))''/(nc-2*fix(3/8*nc))];")
k=k+1;
cname(k)='BluRed'; execstr(cname(k)+"=[1:nc;0*(1:nc);nc:-1:1]''/nc") 
k=k+1;
cname(k)='LightBlueRed';execstr(cname(k)+"=[1:nc;nc:-1:1;nc:-1:1]''/nc;") 
k=k+1;
cname(k)='Sunrise'; execstr(cname(k)+..    
    "=[[zeros(1,nc-floor(nc/4)-floor(nc/2)),...
      linspace(1,nc,floor(nc/4))./nc,ones(1,floor(nc/2))]'',..
       [linspace(0,1,ceil(nc/2)),linspace(1,0,floor(nc/2))]'',..
       [ones(1,floor(nc/2)),linspace(nc,1,floor(nc/4))./nc,...
         zeros(1,nc-floor(nc/2)-floor(nc/4))]''];;")
k=k+1;
cname(k)='BluBlackRed'; 
  execstr(cname(k)+"=[zeros(1,ceil(nc/2)),linspace(1,nc,floor(nc/2));...
  zeros(1,nc);linspace(nc,1,floor(nc/2)),zeros(1,ceil(nc/2))]''/nc;") 
k=k+1;
cname(k)='BluBlackRed_II';execstr(cname(k)+"=sqrt(BluBlackRed);")
k=k+1;
cname(k)='BluGreenRed'; 
  execstr(cname(k)+"=[zeros(1,ceil(nc/2)),linspace(1,nc,floor(nc/2));..
        zeros(1,floor(nc/4)),linspace(1,nc,floor(nc/4)),...
        linspace(nc,0,nc-3*floor(nc/4)),zeros(1,floor(nc/4));...
        linspace(nc,1,floor(nc/2)),zeros(1,ceil(nc/2))]''/nc;") 
k=k+1;
cname(k)='BluGreenRed_II'; 
  
execstr(cname(k)+"=[zeros(1,floor(nc/2)),..
                    linspace(1,nc,ceil(nc/2));...
      linspace(0,nc,ceil(nc/2)),linspace(nc,0,floor(nc/2));...
      linspace(nc,0,ceil(nc/2)),zeros(1,floor(nc/2))]''/nc;") 
k=k+1;
cname(k)='BluGreenRed_III'; execstr(cname(k)+"=[1:nc;...
        linspace(0,nc,floor(nc/2)),linspace(nc,0,ceil(nc/2))...
        ;nc:-1:1]''/nc;") 
k=k+1;
cname(k)='Prism'; execstr(cname(k)+"=...
  [ sin((linspace(2,2*nc,nc)+2.*nc/3)*%pi/nc);...
    sin((linspace(2,2*nc,nc)-2.*nc/3)*%pi/nc);...
    sin((linspace(2,2*nc,nc))*%pi/nc)]''/2+1./2;") 
k=k+1;
cname(k)='Prism_II'; execstr(cname(k)+"=Prism.^(1/2)'';")
k=k+1;
cname(k)='Bands'; execstr(cname(k)+"=...
   [1:nc;nc:-1:1;nc*((-sin(15*%pi*(1:nc)/nc)+1)/2)]''/nc;") 
k=k+1;
cname(k)='BlackBands'; execstr(cname(k)+"=...
   ([sin((linspace(2,2*nc,nc)+2.*nc/3)*%pi/nc);...
     sin((linspace(2,2*nc,nc)-2.*nc/3)*%pi/nc);...
     sin((linspace(2,2*nc,nc))*%pi/nc)]''/2+1./2)...
    .*modulo([1:nc;1:nc;1:nc]''-1,nc/8)*7/nc;") 

if lhs==0 then
// demo - interactive choice of colormaps
  currwin=xget('window')
  a=winsid(); xset('window',a($)+1); // note that if a=[], a+1=1
  for j=-k:k;
    setcmap(j,nc);
    subwind(j+k+1,2*k+1,1);
    xstring(0,-0.06,string(j))
    pixmapl(1:nc)
  end
  subwind(1,1,1)
  xtitle('All the colormaps at the current color depth ('+string(nc)+..
         ' colors)')
    disp " "
    i=x_choose(string((-k:k)')+' '+..
     [cname(k:-1:1);'Scilab''s default';cname],..
             'Choose one colormap!','Forget!')-k-1
    xdel(a($)+1); xset('window',currwin); setcmap(i,nc,1)
    return
end


if i==0 then xset("default"); end
if abs(i)>k then 
  write(%io(2)," ")
  write(%io(2),"0 default graphic context")
  for j=1:k
   write(%io(2),string(j)+" "+cname(j));
  end
end  
if abs(i)>=1 & abs(i)<=k then 
  write(%io(2),string(i)+" "+cname(abs(i)))
  ccol=[];
  for j=1:length(i)
//    nc=ncv(j);    //for the future version
    execstr("ccol=[ccol;(sign(-i(j))+1)/2-sign(-i(j))*"+..
             cname(abs(i(j)))+"]"); 
  end
  xset('colormap',ccol)
  if r<>0 then write(%io(2),'redrawing...'); xbasr(xget("window")); end
end

nc=xget("lastpattern")
// reset and returned, just for consistency check

endfunction