File: optloc.sci

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (118 lines) | stat: -rw-r--r-- 2,877 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
function demo_optloc()
  demo_help demo_optloc
  stacksize(1D7)
  n=20; //le nombre de points

  //calcul des coordonnees des points
  Alpha=round(99*rand(n,1))+1;
  Beta=round(99*rand(n,1))+1;
  
  xbasc();
  SetPosition ;
  set figure_style old;
  //xset("wpos",500,16);xset("wdim",600*0.9,400*0.9);
  xselect();
  xset('mark size',4)
  plot2d(Alpha,Beta,style=-10,rect=[1 1 100 100])
  xset("font size", 5 ) ;
  xtitle('Position des consommateurs et des services potentiels')
  realtimeinit(0.1);for k=1:10,realtime(k),end
  xset("font size", 1 ) 

  //Choix des cout de contruction cj
  C=100*ones(n,1); // cout tous egaux
  timer();
  [X1,Y1]=optloc(Alpha,Beta,C);

  kf=find(Y1>0);
  xset('color',5)
  plot2d(Alpha(kf),Beta(kf),style=[-10,1],leg='Ressources 1')
  xset('color',1)
  [ic,jc]=find(X1>0);
  xsegs([Alpha(ic) Alpha(jc)]',[Beta(ic),Beta(jc)]',12)


  C=800*ones(n,1); // cout tous egaux

  [X1,Y1]=optloc(Alpha,Beta,C);
  disp(timer())
  kf=find(Y1>0);
  xset('color',9)
  plot2d(Alpha(kf),Beta(kf),style=[-10,2],leg='Ressources 2')
  xset('color',1)
  [ic,jc]=find(X1>0);
  xsegs([Alpha(ic) Alpha(jc)]',[Beta(ic),Beta(jc)]',15)
  realtimeinit(0.1);for k=1:30,realtime(k),end
  xdel() ;
endfunction

function [X,Y]=optloc(Alpha,Beta,C)
  n=size(Alpha,'*')
  if n<>size(Beta,'*')| n<>size(C,'*') then 
    error('dimension incorrectes')
  end
  // matrices colonnes
  Alpha=Alpha(:);Beta=Beta(:);C=C(:);
  printf("1\n");
  // calcul des distances euclidiennes entre les points
  //D(i,j)=( (Alpha(i)-Alpha(j))^2+(Beta(i)-Beta(j))^2)^(1/2)
  D=sqrt((Alpha*ones(1,n)-ones(n,1)*Alpha').^2+(Beta*ones(1,n)-ones(n,1)*Beta').^2);
  // determination des parametres de linpro
  // ======================================

  // critere a minimiser
  //  ---               ---  --- 
  //  \		      \    \   
  //Z= >(C(j)*Y(j)) +    >    > D(i,j)*X(i,j)
  //  /		      /    /   
  //  ---j	      ---i ---j

  // Z = p'*x  x=[X(:);Y(:)]

  p=[D(:);C(:)];

  // contraintes de bornes
  //  X(i,j)>=0
  //  Y(j)<=1  
  //  Y(j)>=0
  // les deux dernieres contraintes remplacent    Y(j)=0 ou Y(j)=1

  ci=[zeros(n*n,1);  //X(i,j)>=0
      zeros(n,1)  ]; //Y(j)>=0

  cs=[ones(n*n,1)    //X(i,j)<=1
      ones(n,1)  ];  //Y(j)<=1

  // contraintes lineaires d'inegalites
  //  X(i,j)<=Y(j)   ==>  X(i,j)-Y(j)<=0

  // c*x<=b
  b2=zeros(n*n,1);
  A2=[eye(n*n,n*n),-eye(n,n).*.ones(n,1)];  // X(i,j)-Y(j)
  
  printf("2\n");
  //contraintes d'egalites
  //  ---           
  //  \		  
  //   > X(i,j) = 1 
  //  /		  
  //  ---j	

  b1=ones(n,1);
  A1=[ones(1,n).*.eye(n,n) zeros(n,n)];

  //resolution
  x0=zeros(n*n+n,1);
  timer();
  [x,lagr,f]=linpro(p,[A1;A2],[b1;b2],ci,cs,n)//,x0)
  disp(timer())
  if max(abs(x-round(x)))>1.d-6 then warning('solution non entiere'),end

  printf("3\n");

  x=round(x)
  X=matrix(x(1:n^2),n,n)
  Y=x(n^2+1:$)
  printf("4\n");

endfunction