1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
function [out]=Fooo(t,Y,Yprim)
// Function generated by Maple to Scilab interface
out=[
Yprim(1)-Y(7);
Yprim(2)-Y(8);
Yprim(3)-Y(9);
Yprim(4)-Y(10);
Yprim(5)-Y(11);
Yprim(6)-Y(12);
M*Yprim(7)+m1*Yprim(7)+m1*Yprim(10)*sin(Y(3))+2.0*m1*Y(10)*cos(Y(3))*Y..
(9)-m1*Y(4)*sin(Y(3))*Y(9)**2+m1*Y(4)*cos(Y(3))*Yprim(9)+m2*Yprim(7)+m..
2*Yprim(10)*sin(Y(3))+2.0*m2*Y(10)*cos(Y(3))*Y(9)-m2*Y(4)*sin(Y(3))*Y(..
9)**2+m2*Y(4)*cos(Y(3))*Yprim(9)+m2*Yprim(12)*sin(Y(5))+2.0*m2*Y(12)*c..
os(Y(5))*Y(11)-m2*Y(6)*sin(Y(5))*Y(11)**2+m2*Y(6)*cos(Y(5))*Yprim(11)-..
2.0*Y(13)*Y(1)+0.11D1*Y(13)*sin(0.33D1*Y(1))+k*Y(7);
M*Yprim(8)+m1*Yprim(8)-m1*Yprim(10)*cos(Y(3))+2*m1*Y(10)*sin(Y(3))*Y(9..
)+m1*Y(4)*cos(Y(3))*Y(9)**2+m1*Y(4)*sin(Y(3))*Yprim(9)+m2*Yprim(8)-m2*..
Yprim(10)*cos(Y(3))+2*m2*Y(10)*sin(Y(3))*Y(9)+m2*Y(4)*cos(Y(3))*Y(9)**..
2+m2*Y(4)*sin(Y(3))*Yprim(9)-m2*Yprim(12)*cos(Y(5))+2*m2*Y(12)*sin(Y(5..
))*Y(11)+m2*Y(6)*cos(Y(5))*Y(11)**2+m2*Y(6)*sin(Y(5))*Yprim(11)+M*g+m1..
*g+m2*g+Y(13)+k*Y(8);
Y(4)*(m1*g*sin(Y(3))+m2*g*sin(Y(3))+m1*cos(Y(3))*Yprim(7)+m1*sin(Y(3))..
*Yprim(8)+m2*cos(Y(3))*Yprim(7)+m2*sin(Y(3))*Yprim(8)+m2*cos(Y(3))*Ypr..
im(12)*sin(Y(5))-m2*sin(Y(3))*Yprim(12)*cos(Y(5))+2*m2*cos(Y(3))*Y(12)..
*cos(Y(5))*Y(11)-m2*cos(Y(3))*Y(6)*sin(Y(5))*Y(11)**2+m2*cos(Y(3))*Y(6..
)*cos(Y(5))*Yprim(11)+2*m2*sin(Y(3))*Y(12)*sin(Y(5))*Y(11)+m2*sin(Y(3)..
)*Y(6)*cos(Y(5))*Y(11)**2+m2*sin(Y(3))*Y(6)*sin(Y(5))*Yprim(11)+m1*Y(4..
)*Yprim(9)+2*m1*Y(9)*Y(10)+m2*Y(4)*Yprim(9)+2*m2*Y(9)*Y(10));
-m2*g*cos(Y(3))+m1*Yprim(10)-m2*cos(Y(3))*Yprim(8)-m1*g*cos(Y(3))+m1*s..
in(Y(3))*Yprim(7)-m1*cos(Y(3))*Yprim(8)+m2*sin(Y(3))*Yprim(12)*sin(Y(5..
))+m2*cos(Y(3))*Yprim(12)*cos(Y(5))+m2*sin(Y(3))*Yprim(7)+k1*Y(4)-k1*l..
1bar+2*m2*sin(Y(3))*Y(12)*cos(Y(5))*Y(11)-m2*sin(Y(3))*Y(6)*sin(Y(5))*..
Y(11)**2+m2*sin(Y(3))*Y(6)*cos(Y(5))*Yprim(11)-2*m2*cos(Y(3))*Y(12)*si..
n(Y(5))*Y(11)-m2*cos(Y(3))*Y(6)*cos(Y(5))*Y(11)**2-m2*cos(Y(3))*Y(6)*s..
in(Y(5))*Yprim(11)-m1*Y(4)*Y(9)**2-m2*Y(4)*Y(9)**2+m2*Yprim(10);
m2*Y(6)*(-cos(Y(5))*Y(4)*sin(Y(3))*Y(9)**2+cos(Y(5))*Y(4)*cos(Y(3))*Yp..
rim(9)+2*cos(Y(5))*Y(10)*cos(Y(3))*Y(9)-sin(Y(5))*Yprim(10)*cos(Y(3))+..
Y(6)*Yprim(11)+g*sin(Y(5))+cos(Y(5))*Yprim(10)*sin(Y(3))+2*Y(11)*Y(12)..
+cos(Y(5))*Yprim(7)+sin(Y(5))*Yprim(8)+2*sin(Y(5))*Y(10)*sin(Y(3))*Y(9..
)+sin(Y(5))*Y(4)*cos(Y(3))*Y(9)**2+sin(Y(5))*Y(4)*sin(Y(3))*Yprim(9));
-m2*g*cos(Y(5))+m2*Yprim(12)-m2*cos(Y(5))*Yprim(8)+m2*sin(Y(5))*Yprim(..
10)*sin(Y(3))+m2*cos(Y(5))*Yprim(10)*cos(Y(3))-m2*Y(6)*Y(11)**2+2*m2*s..
in(Y(5))*Y(10)*cos(Y(3))*Y(9)+m2*sin(Y(5))*Yprim(7)-m2*sin(Y(5))*Y(4)*..
sin(Y(3))*Y(9)**2+m2*sin(Y(5))*Y(4)*cos(Y(3))*Yprim(9)-2*m2*cos(Y(5))*..
Y(10)*sin(Y(3))*Y(9)-m2*cos(Y(5))*Y(4)*cos(Y(3))*Y(9)**2-m2*cos(Y(5))*..
Y(4)*sin(Y(3))*Yprim(9)+k2*Y(6)-k2*l2bar;
Y(7)*(-2*Y(1)+0.11D1*sin(0.33D1*Y(1)))+Y(8);
]
endfunction
function [r,ir]=FFFF(t,Y,Yprim)
r=Fooo(t,Y,Yprim);
ir=0;
endfunction
// pendule vertical de longueur l
// pendu en (x,y) avec un angle theta
function [xv,yv]=pend_vert(x,y,theta,l)
xv=[0;0;(-1).^(1:nspire)'*ep;0;0];
yv=[0;-ef;-(1:nspire)'*(l-2*ef)/(nspire+1)-ef;-l+ef;-l]
// translation
xv=xv+x; yv=yv+y;
// rotation
rot=[cos(theta) -sin(theta); sin(theta) cos(theta)];
N=nspire+4;
res=[x*ones(1,N);y*ones(1,N)]+rot*[xv'-x;yv'-y];
xv=res(1,:)'; yv=res(2,:)';
endfunction
function [B,P1,P2]=contruit_pendule()
// construit la figure du pendule avec ses entits graphiques
// retourne les handles sur la boule et les pendules
clf();
// dfinition de la figure
f=gcf();a=gca();
toolbar(f.figure_id,"off");
a.isoview="on";
f.pixmap="on";
a.box="off";
drawlater();
xmin=-1.25; xmax=1.25; ymin=-3; ymax=1;
a.data_bounds=[xmin ymin;xmax ymax]
// le cadre
// xrect(xmin,ymax,xmax-xmin,ymax-ymin)
// la courbe
vx=[xmin:0.01:xmax]'; vy=vx.*vx+cos(3.3*vx)/3;
xpoly(vx,vy,"lines")
c=gce();c.foreground=color("red"); c.thickness=2;
// la boule
r=0.05
x=0; y=0; theta1=0; l1=l10;
xfarc(x-r,y+r,2*r,2*r,0,360*64)
B=gce();
// la tige du pendule 1
x1=x+l1*sin(theta1); y1=y-l1*cos(theta1);
r=0.05 // le rayon de la boule du pendule 1
[xv,yv]=pend_vert(x,y,theta1,l1)
xpoly(xv,yv,"lines")
p=gce();p.thickness=2;
// la boule du pendule 1
xfarc(x1-r,y1+r,2*r,2*r,0,360*64)
b=gce()
P1=glue([p,b]) //retourne le handle sur la tige et la boule 1
// la tige du pendule 2
theta2=0; l2=l20;
x2=x1+l1*sin(theta1); y2=y1-l1*cos(theta1);
r=0.05 // le rayon de la boule du pendule 2
[xv,yv]=pend_vert(x1,y1,theta2,l2)
xpoly(xv,yv,"lines")
p=gce();p.thickness=2;
// la boule du pendule 2
xfarc(x2-r,y2+r,2*r,2*r,0,360*64)
b=gce()
P2=glue([p,b]) //retourne le handle sur la tige et la boule 1
endfunction
function dessine_pendule(B,P1,P2,position)
// dessine une position du pendule
drawlater();
x=position(1); y=position(2); theta1=position(3); l1=position(4);
theta2=position(5); l2=position(6);
// boule
r=B.data(3)/2;
B.data=[x-r,y+r,2*r,2*r,0,360*64];
// premier pendule
b = P1.children(1);r=b.data(3)/2
x1=x+l1*sin(theta1); y1=y-l1*cos(theta1);
p = P1.children(2);
[xv,yv]=pend_vert(x,y,theta1,l1)
p.data=[xv yv];
b = P1.children(1); b.data=[x1-r,y1+r,2*r,2*r,0,360*64];
// deuxieme pendule
b = P2.children(1);r=b.data(3)/2
x2=x1+l2*sin(theta2); y2=y1-l2*cos(theta2);
p = P2.children(2);
[xv,yv]=pend_vert(x1,y1,theta2,l2)
p.data=[xv yv];
b = P2.children(1); b.data=[x2-r,y2+r,2*r,2*r,0,360*64];
drawnow();
show_pixmap()
endfunction
function demo_sliding_pendulum()
//
// Sliding pendulum
// Claude Gomez
// Copyright INRIA
demo_help demo_sliding_pendulum
// donnes
g=10; M=1; k=0.35; l1bar=1; m1=1; k1=40; l2bar=1; m2=1; k2=40;
// conditions initiales donnes
x0=1; y0=1+cos(3.3)/3; theta10=0; l10=l1bar; theta20=0; l20=l2bar; lambda0=0;
xprim0=0; yprim0=0; theta1prim0=0; l1prim0=0; theta2prim0=0; l2prim0=0; lambdaprim0=0;
xprimprim0=0; yprimprim0=-g; theta1primprim0=0; l1primprim0=0; theta2primprim0=0; l2primprim0=0;
Y0=[x0;y0;theta10;l10;;theta20;l20;xprim0;yprim0;theta1prim0;l1prim0;theta2prim0;l2prim0;lambda0];
Yprim0=[xprim0;yprim0;theta1prim0;l1prim0;theta2prim0;l2prim0;
xprimprim0;yprimprim0;theta1primprim0;l1primprim0;theta2primprim0;l2primprim0;
lambdaprim0];
t0=0; t=t0:0.05:20;
atol=[0.0001;0.0001;0.0001;0.0001;0.0001;0.0001;0.001;0.001;0.001;0.001;0.001;0.001;0.01];
rtol=atol;
Y=dassl([Y0,Yprim0],t0,t,rtol,atol,FFFF);
nspire=10;
ep=0.1;
ef=0.1;
// dessine le pendule dans sa position initiale
[B,P1,P2]=contruit_pendule();
dessine_pendule(B,P1,P2,Y0(1:8));
// animation du pendule
realtimeinit(0.1);realtime(0)
for i=1:size(Y,2)
realtime(i);
dessine_pendule(B,P1,P2,Y(2:7,i))
end
endfunction
|