File: datafit.sci

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (175 lines) | stat: -rw-r--r-- 4,122 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
function [p,err]=datafit(imp,G,varargin)
//
//         [p,err]=datafit([imp,] G [,DG],Z [,W],...)
//
//         Function used for fitting data to a model.
// For a given function G(p,z), this function finds the best vector 
// of parameters p for approximating G(p,z_i)=0 for a set of measurement
// vectors z_i. Vector p is found by minimizing
//    G(p,z_1)'WG(p,z_1)+G(p,z_2)'WG(p,z_2)+...+G(p,z_n)'WG(p,z_n)
//
//      G: Scilab function (e=G(p,z), e: nex1, p: npx1, z: nzx1)
//     p0: initial guess (size npx1)
//      Z: matrix [z_1,z_2,...z_n] where z_i (nzx1) is the ith measurement
//      W: weighting matrix of size nexne (optional)
//     DG: partial of G wrt p (optional; S=DG(p,z), S: nexnp)
//
//                     Examples
//
//deff('y=FF(x)','y=a*(x-b)+c*x.*x')
//X=[];Y=[];
//a=34;b=12;c=14;for x=0:.1:3, Y=[Y,FF(x)+100*(rand()-.5)];X=[X,x];end
//Z=[Y;X];
//deff('e=G(p,z)','a=p(1),b=p(2),c=p(3),y=z(1),x=z(2),e=y-FF(x)')
//[p,err]=datafit(G,Z,[3;5;10])
//xset('window',0)
//xbasc();
//plot2d(X',Y',-1) 
//plot2d(X',FF(X)',5,'002')
//a=p(1),b=p(2),c=p(3);plot2d(X',FF(X)',12,'002')
//
//a=34;b=12;c=14;
//deff('s=DG(p,z)','y=z(1),x=z(2),s=-[x-p(2),-p(1),x*x]')
//[p,err]=datafit(G,DG,Z,[3;5;10])
//xset('window',1)
//xbasc(); 
//plot2d(X',Y',-1) 
//plot2d(X',FF(X)',5,'002')
//a=p(1),b=p(2),c=p(3);plot2d(X',FF(X)',12,'002')
//
//
// Copyright INRIA

[lhs,rhs]=argn(0)

if type(imp)<>1 then
  varargin(0)=G
  G=imp
  imp=0
end

if type(G)==15 then
  Gparams=G;Gparams(1)=null();
  G=G(1)
else
  Gparams=list()
end

  
DG=varargin(1)
if type(DG)==10|type(DG)==11|type(DG)==13 then 
  GR=%t  //Jacobian provided
  varargin(1)=null()
elseif type(DG)==15 then 
  error('Jacobian cannot be a list, parameters must be set in G')
else
  GR=%f
end

Z=varargin(1);
varargin(1)=null()
if type(Z)<>1 then 
  error('datafit : wrong measurement matrix')
end

nv=size(varargin)
if nv>=1 then
  if size(varargin(1),2)==1 then // p0 ou 'b'
    W=1
  else
    W=varargin(1);varargin(1)=null()
    if size(W,1)~=size(W,2) then 
      error('Weighting matrix must be square');
    end
  end
end  
if type(varargin(1))==1 then // p0
  p0=varargin(1)
else
  p0=varargin(4)
end

[mz,nz]=size(Z);np=size(p0,'*');

if type(G)==10 then  //form function to call hard coded external
  if size(Gparams)==0 then 
    error('With hard coded function, user must give output size of G'),
  end
  m=Gparams(1);Gparams(1)=null()
  
  // foo(m,np,p,mz,nz,Z,pars,f)
  deff('f=G(p,Z)','f=call('''+G+''','+..
      'm,1,''i'',np,2,''i'',p,3,''d'',mz,4,''i'',nz,5,''i'',Z,6,''d'','+..
      'pars,7,''out'',['+string(m)+',1],8,''d'')')
  
  pars=[];
  for k=1:size(Gparams)
    p=Gparams(k)
    pars=[pars;p(:)]
  end
  Gparams=list()
end

if type(DG)==10 then //form function to call hard coded external
  // dfoo(m,np,p,mz,nz,Z,pars,f)
  deff('f=DG(p,Z)','f=call('''+DG+''','+..
      'm,1,''i'',np,2,''i'',p,3,''d'',mz,4,''i'',nz,5,''i'',Z,6,''d'','+..
      'pars,7,''out'',['+string(m)+','+string(np)+'],8,''d'')')
end


// form square cost gradient function DGG

if Gparams==list() then
  GP   = 'G(p,Z(:,i))'
  GPPV = 'G(p+v,Z(:,i))'
  DGP  = 'DG(p,Z(:,i))'
else
  GP   = 'G(p,Z(:,i),Gparams(:))'
  GPPV = 'G(p+v,Z(:,i),Gparams(:))'
  DGP  = 'DG(p,Z(:,i),Gparams(:))'  
end
  
if ~GR then // finite difference
  DGG=['g=0*p';
       'pa=sqrt(%eps)*(1+1d-3*abs(p))'
       'f=0;'
       'for i=1:'+string(nz)
       '  g1='+GP
       '  f=f+g1''*W*g1'
       'end'
       'for j=1:'+string(np)
       '  v=0*p;v(j)=pa(j),'
       '  e=0;'
       '  for i=1:'+string(nz)
       '    g1='+GPPV
       '    e=e+g1''*W*g1'
       '  end'
       '  g(j)=e-f;'
       'end;'
       'g=g./pa;']
else // using Jacobian of G
  DGG='g=0;for i=1:nz,g=g+2*'+DGP+'''*W*'+GP+',end'
end

// form cost function for optim
deff('[f,g,ind]=costf(p,ind)',[
    'if ind==2|ind==4 then '
    '  f=0;'
    '   for i=1:'+string(nz)
    '     g1='+GP
    '     f=f+g1''*W*g1'
    '   end'
    'else '
    '  f=0;'
    'end';
    'if ind==3|ind==4 then' 
      DGG
    'else' 
    ' g=0*p;'
    'end'])

[err,p]=optim(costf,varargin(:),imp=imp)

 
endfunction