File: gmres.sci

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (303 lines) | stat: -rw-r--r-- 6,935 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// [x, flag, resNorm, iter, resVec] = gmres( A, b, x, M, restrt, max_it, tol )
//
// GMRES solves the linear system Ax=b
// using the Generalized Minimal RESidual ( GMRES ) method with restarts .
//
// input   A        REAL nonsymmetric positive definite matrix or function
//         x        REAL initial guess vector
//         b        REAL right hand side vector
//         M        REAL preconditioner matrix or function
//         restrt   INTEGER number of iterations between restarts
//         max_it   INTEGER maximum number of iterations
//         tol      REAL error tolerance
//
// output  x        REAL solution vector
//         flag     INTEGER: 0 = solution found to tolerance
//                           1 = no convergence given max_it
//         resNorm      REAL final residual norm
//         iter     INTEGER number of iterations performed
//         resVec      REAL residual vector

//     Details of this algorithm are described in 
//
//     "Templates for the Solution of Linear Systems: Building Blocks 
//     for Iterative Methods", 
//     Barrett, Berry, Chan, Demmel, Donato, Dongarra, Eijkhout,
//     Pozo, Romine, and Van der Vorst, SIAM Publications, 1993
//     (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
//
//     "Iterative Methods for Sparse Linear Systems, Second Edition"
//     Saad, SIAM Publications, 2003
//     (ftp ftp.cs.umn.edu; cd dept/users/saad/PS; get all_ps.zip).

function [x, flag, resNorm, iter, resVec] = gmres(A, varargin)

// -----------------------
// Parsing input arguments
// -----------------------

[lhs,rhs]=argn(0);
if ( rhs < 2 ),
  error("gmres: not enough argument");
end

// Parsing the matrix A et the right hand side vector b
select type(A)
case 1 then
  matrixType = 1;
case 5 then
  matrixType = 1;
case 13 then
  matrixType = 0;
end
// If A is a matrix (full or sparse)
if (matrixType == 1),
  if (size(A,1) ~= size(A,2)),
    error("gmres: matrix A must be square");
  end
end
b=varargin(1);
if (size(b,2) ~= 1),
  error("gmres: right hand side member must be a column vector");
end
if (matrixType==1),
  if (size(b,1) ~= size(A,1)),
    error("gmres: right hand side vector must have the size of the matrix A");
  end 
end

// Number of iterations between restarts
if (rhs >= 3),
  restrt=varargin(2);
  if (size(restrt) ~= [1 1]),
    error("gmres: restart must be a scalar");
  end 
else
  restrt=20;
end

// Error tolerance tol
if (rhs >= 4),
  tol=varargin(3);
  if (size(tol) ~= [1 1]);
    error("gmres: tol must be a scalar");
  end
else
  tol = 1e-6;
end

// Maximum number of iterations max_it
if (rhs >= 5),
  max_it=varargin(4);
  if (size(max_it) ~= [1 1]),
    error("gmres: max_it must be a scalar");
  end 
else
  max_it=size(b,1);
end

// Parsing of the preconditioner matrix M
if (rhs >= 6),
  M = varargin(5);
  select type(M)
  case 1 then
    precondType = 1;
  case 5 then
    precondType = 1;
  case 13 then
    precondType = 0;
  end 
  if (precondType == 1),
    if (size(M,1) ~= size(M,2)),
      error("gmres: preconditionner matrix M must be square");
    end 
    if (size(M,1) == 0),
      precondType = 2; // no preconditionning
    elseif ( size(M,1) ~= size(b,1) ), 
      error("Preconditionner matrix M must have same size as the problem");
    end
  end
  if (precondType == 0),
    M = varargin(3);
  end
else
  precondType = 2; // no preconditionning
end

// Parsing of the initial vector x
if (rhs >= 7),
  x=varargin(6);
  if (size(x,2) ~= 1),
    error("Initial guess x0 must be a column vector");
  end
  if ( size(x,1) ~= size(b,1) ),
    error("gmres: initial guess x0 must have the size of the matrix A");
  end 
else
  x=zeros(b);
end

if (rhs > 7),
  error("gmres: too many input arguments");
end

// ------------
// Computations
// ------------

   j = 0; 
   flag = 0;
   it2 = 0;
 
   bnrm2 = norm(b);
   if (bnrm2 == 0.0), 
     x = zeros(b);
     resNorm = 0;
     iter = 0;
     resVec = resNorm;
     flag = 0;
     return
   end
   
   // r = M \ ( b-A*x );
   if (matrixType == 1),
     r = b - A*x;
   else 
     r = b - A(x);
   end
   if (precondType == 1),
     r = M \ r;
   elseif (precondType == 0),
     r = M(r);
   end
   resNorm = norm(r)/bnrm2;
   resVec = resNorm;
   if (resNorm < tol), 
     iter=0; 
     return; 
   end

   n = size(b,1);
   m = restrt;
   V(1:n,1:m+1) = zeros(n,m+1);
   H(1:m+1,1:m) = zeros(m+1,m);
   cs(1:m) = zeros(m,1);
   sn(1:m) = zeros(m,1);
   e1    = zeros(n,1);
   e1(1) = 1.0;

   for j = 1:max_it
     // r = M \ ( b-A*x );
     if (matrixType == 1),
       r = b - A*x;
     else 
       r = b - A(x);
     end
     if (precondType == 1),
       r = M \ r;
     elseif (precondType == 0),
       r = M(r);
     end
     
     V(:,1) = r / norm( r );
     s = norm( r )*e1;
     for i = 1:m      // construct orthonormal
       it2 = it2 + 1; // basis using Gram-Schmidt
       // w = M \ (A*V(:,i)); 
       if (matrixType == 1),
	 w = A*V(:,i);
       else 
	 w = A(V(:,i));
       end
       if (precondType == 1),
	 w = M \ w;
       elseif (precondType == 0),
	 w = M(w);
       end
       
       for k = 1:i 
	 H(k,i)= w'*V(:,k);
	 w = w - H(k,i)*V(:,k);
       end
       H(i+1,i) = norm( w );
       V(:,i+1) = w / H(i+1,i);
       for k = 1:i-1 // apply Givens rotation
	 temp     =  cs(k)*H(k,i) + sn(k)*H(k+1,i);
	 H(k+1,i) = -sn(k)*H(k,i) + cs(k)*H(k+1,i);
	 H(k,i)   = temp;
       end
        // form i-th rotation matrix
       [tp1,tp2] = rotmat( H(i,i), H(i+1,i) );
       cs(i)  = tp1;
       sn(i)  = tp2;
       temp   = cs(i)*s(i);      
       s(i+1) = -sn(i)*s(i);
       s(i)   = temp;
       H(i,i) = cs(i)*H(i,i) + sn(i)*H(i+1,i);
       H(i+1,i) = 0.0;
       resNorm  = abs(s(i+1)) / bnrm2;
       resVec = [resVec;resNorm];
       if ( resNorm <= tol ),
	 y = H(1:i,1:i) \ s(1:i);
	 x = x + V(:,1:i)*y;
	 break;
       end
     end
     if (resNorm <= tol), 
       iter = j-1+it2;
       break; 
     end
     y = H(1:m,1:m) \ s(1:m);
     // update approximation
     x = x + V(:,1:m)*y;
     // r = M \ ( b-A*x )
     if (matrixType == 1),
       r = b - A*x;
     else 
       r = b - A(x);
     end
     if (precondType == 1),
       r = M \ r;
     elseif (precondType == 0),
       r = M(r);
     end
     s(j+1) = norm(r);
     resNorm = s(j+1) / bnrm2;
     resVec = [resVec; resNorm];
     
     if ( resNorm <= tol ),
       iter = j+it2;
       break; 
     end
     if ( j== max_it ), 
       iter=j+it2; 
     end
   end
   if ( resNorm > tol ), 
     flag = 1; 
     if (lhs < 2),
       warning('GMRES did not converge');
     end
   end
endfunction
 

//
// Compute the Givens rotation matrix parameters for a and b.
//
function [ c, s ] = rotmat( a, b )
if ( b == 0.0 ),
  c = 1.0;
  s = 0.0;
elseif ( abs(b) > abs(a) ),
  temp = a / b;
  s = 1.0 / sqrt( 1.0 + temp^2 );
  c = temp * s;
else
  temp = b / a;
  c = 1.0 / sqrt( 1.0 + temp^2 );
  s = temp * c;
end
endfunction //rotmat